OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 7 — Jul. 1, 2007
  • pp: 1549–1556

Modulation solutions for nematicon propagation in nonlocal liquid crystals

Antonmaria A. Minzoni, Noel F. Smyth, and Annette L. Worthy  »View Author Affiliations

JOSA B, Vol. 24, Issue 7, pp. 1549-1556 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (222 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The propagation of solitary waves, so-called nematicons, in a nonlinear nematic liquid crystal is considered in the nonlocal regime. Approximate modulation equations governing the evolution of input beams into steady nematicons are derived by using suitable trial functions in a Lagrangian formulation of the equations for a nematic liquid crystal. The variational equations are then extended to include the effect of diffractive loss as the beam evolves. It is found that the nonlocal nature of the interaction between the light and the nematic has a significant effect on the form of this diffractive radiation. Furthermore, it is this shed radiation that allows the input beam to evolve to a steady nematicon. Finally, excellent agreement is found between solutions of the modulation equations and numerical solutions of the nematic liquid-crystal equations.

© 2007 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(190.5940) Nonlinear optics : Self-action effects

ToC Category:
Nonlinear Optics

Original Manuscript: December 21, 2006
Revised Manuscript: February 26, 2007
Manuscript Accepted: February 27, 2007
Published: June 15, 2007

Antonmaria A. Minzoni, Noel F. Smyth, and Annette L. Worthy, "Modulation solutions for nematicon propagation in nonlocal liquid crystals," J. Opt. Soc. Am. B 24, 1549-1556 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Assanto, M. Peccianti, and C. Conti, "Nemations: optical spatial solitons in nematic liquid crystals," Opt. Photonics News Feb. 2003, pp. 44-48. [CrossRef]
  2. C. Conti, M. Peccianti, and G. Assanto, "Route to nonlocality and observation of accessible solitons," Phys. Rev. Lett. 91, 073901 (2003). [CrossRef] [PubMed]
  3. C. Conti, M. Peccianti, and G. Assanto, "Observation of optical spatial solitons in a highly nonlocal medium," Phys. Rev. Lett. 92, 113902 (2004). [CrossRef] [PubMed]
  4. M. Peccianti, C. Conti, G. Assanto, A. de Luca, and C. Umeton, "Routing of anisotropic spatial solitons and modulational instability in liquid crystals," Nature 432, 733-737 (2004). [CrossRef] [PubMed]
  5. E. A. Kuznetsov and A. M. Rubenchik, "Soliton stabilization in plasmas and hydrodynamics," Phys. Rep. 142, 103-165 (1986). [CrossRef]
  6. W. L. Kath and N. F. Smyth, "Soliton evolution and radiation loss for the nonlinear Schrödinger equation," Phys. Rev. E 51, 1484-1492 (1995). [CrossRef]
  7. C. García Reimbert, A. A. Minzoni, and N. F. Smyth, "Spatial soliton evolution in nematic liquid crystals in the nonlinear local regime," J. Opt. Soc. Am. B 23, 294-301 (2006). [CrossRef]
  8. C. García Reimbert, A. A. Minzoni, N. F. Smyth, and A. L. Worthy, "Large-amplitude nematicon propagation in a liquid crystal with local response," J. Opt. Soc. Am. B 23, 2551-2558 (2006). [CrossRef]
  9. P. D. Rasmussen, O. Bang, and W. Królikowski, "Theory of nonlocal soliton interaction in nematic liquid crystals," Phys. Rev. E 72, 066611 (2005). [CrossRef]
  10. A. I. Yakimenko, V. M. Lashkin, and O. O. Prikhodko, "Dynamics of two-dimensional coherent structures in nonlocal nonlinear media," Phys. Rev. E 73, 066605 (2006). [CrossRef]
  11. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1972).
  12. J. Yang, "Vector solitons and their internal oscillations in birefringent nonlinear optical fibers," Stud. Appl. Math. 98, 61-97 (1997). [CrossRef]
  13. B. Fornberg and G. B. Whitham, "A numerical and theoretical study of certain nonlinear wave phenomena," Philos. Trans. R. Soc. London, Ser. A 289, 373-403 (1978). [CrossRef]
  14. W. Królikowski, O. Bang, N. I. Nikolov, D. Neshev, J. Whyller, J. J. Rasmussen, and D. Edmundson, "Modulation instability, solitons and beam propagation in spatially nonlocal nonlinear media," J. Opt. B: Quantum Semiclassical Opt. 6, S288-S294 (2004). [CrossRef]
  15. Y. Huang, Q. Guo, and J. Cao, "Optical beams in lossy non-local Kerr media," Opt. Commun. 261, 175-180 (2006). [CrossRef]
  16. M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, "Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells," Appl. Phys. Lett. 77, 7-9 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited