OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 7 — Jul. 1, 2007
  • pp: 1564–1570

Guided-wave frequency doubling in surface periodically poled lithium niobate: competing effects

S. Stivala, A. Pasquazi, L. Colace, G. Assanto, A. C. Busacca, M. Cherchi, S. Riva-Sanseverino, A. C. Cino, and A. Parisi  »View Author Affiliations

JOSA B, Vol. 24, Issue 7, pp. 1564-1570 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (275 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We carried out second-harmonic generation in quasi-phase-matched α-phase lithium niobate channel waveguides realized by proton exchange and surface periodic poling. Owing to a limited ferroelectric domain depth, we could observe the interplay between second-harmonic generation and self-phase modulation due to cascading and cubic effects, resulting in a nonlinear resonance shift. Data reduction allowed us to evaluate both the quadratic nonlinearity in the near infrared as well as the depth of the uninverted domains.

© 2007 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics

ToC Category:
Nonlinear Optics

Original Manuscript: January 16, 2007
Revised Manuscript: March 22, 2007
Manuscript Accepted: March 22, 2007
Published: June 15, 2007

S. Stivala, A. Pasquazi, L. Colace, G. Assanto, A. C. Busacca, M. Cherchi, S. Riva-Sanseverino, A. C. Cino, and A. Parisi, "Guided-wave frequency doubling in surface periodically poled lithium niobate: competing effects," J. Opt. Soc. Am. B 24, 1564-1570 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. J. Lim, M. M. Fejer, and R. L. Byer, "Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide," Electron. Lett. 25, 174-175 (1989). [CrossRef]
  2. K. El Hadi, M. Sundheimer, P. Aschieri, P. Baldi, M. P. De Micheli, D. B. Ostrowsky, and F. Laurell, "Quasi-phase-matched parametric interactions in proton-exchanged lithium niobate waveguides," J. Opt. Soc. Am. B 14, 3197-3203 (1997). [CrossRef]
  3. J. Webjörn, S. Siala, D. W. Nam, R. G. Waarts, and R. J. Lang, "Visible laser sources based on frequency doubling in nonlinear waveguides," IEEE J. Quantum Electron. 33, 1673-1686 (1997). [CrossRef]
  4. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, "Highly efficient second-harmonic generation in waveguides formed by annealed and reverse proton in periodically poled lithium niobate," Opt. Lett. 27, 179-181 (2002). [CrossRef]
  5. V. Shur, E. Rumyantsev, R. Batchko, G. Miller, M. Fejer, and R. Byer, "Physical basis of the domain engineering in the bulk ferroelectrics," Ferroelectrics 221, 157-159 (1999). [CrossRef]
  6. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, "First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation," Appl. Phys. Lett. 62, 435-436 (1993). [CrossRef]
  7. H. Ito, C. Takyu, and H. Inaba, "Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes," Electron. Lett. 27, 1221-1222 (1991). [CrossRef]
  8. S. Miyazawa, "Ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide," J. Appl. Phys. 50, 4599-4603 (1979). [CrossRef]
  9. J. L. Jackel, C. E. Rice, and J. J. Veselka, "Proton exchange for high-index waveguides in LiNbO3," Appl. Phys. Lett. 41, 607-608 (1982). [CrossRef]
  10. A. C. Busacca, C. L. Sones, R. W. Eason, and S. Mailis, "First order quasi-phase matched blue light generation in surface poled Ti-indiffused lithium niobate waveguide," Appl. Phys. Lett. 84, 4430-4432 (2004). [CrossRef]
  11. Y. J. Ding, S. J. Lee, and J. B. Khurgin, "Transversely pumped counterpropagating optical parametric oscillation and amplification," Phys. Rev. Lett. 75, 429-432 (1995). [CrossRef] [PubMed]
  12. C. Conti, G. Assanto, and S. Trillo, "Cavityless oscillations through backward quasi-phase-matched second harmonic generation," Opt. Lett. 24, 1139-1141 (1999). [CrossRef]
  13. K. Gallo, P. Baldi, M. De Micheli, D. B. Ostrowsky, and G. Assanto, "Cascading phase shift and multivalued response in counterpropagating frequency-nondegenerate parametric amplifiers," Opt. Lett. 25, 966-968 (2000). [CrossRef]
  14. G. D. Landry and T. A. Maldonado, "Counterpropagating quasi-phase matching: a generalized analysis," J. Opt. Soc. Am. B 21, 1509-1520 (2004). [CrossRef]
  15. A. C. Busacca, C. L. Sones, V. Apostopoulos, R. W. Eason, and S. Mailis, "Surface domain engineering in congruent lithium niobate single crystals: a route to submicron periodic poling," Appl. Phys. Lett. 81, 4946-4948 (2002). [CrossRef]
  16. A. C. Busacca, A. C. Cino, S. Riva Sanseverino, M. Ravaro, and G. Assanto, "Silica masks for improved surface poling of lithium niobate," Electron. Lett. 41, 92-93 (2005). [CrossRef]
  17. J. U. Kang, Y. J. Ding, W. K. Burns, and J. S. Melinger, "Backward second-harmonic generation in periodically poled bulk LiNbO3," Opt. Lett. 22, 862-864 (1997). [CrossRef] [PubMed]
  18. X. Gu, R. Y. Korotkov, Y. J. Ding, J. U. Kang, and J. B. Khurgin, "Backward second-harmonic generation in periodically poled lithium niobate," J. Opt. Soc. Am. B 15, 1561-1566 (1998). [CrossRef]
  19. X. Gu, M. Makarov, Y. J. Ding, J. B. Khurgin, and W. P. Risk, "Backward second-harmonic and third-harmonic generation in a periodically poled potassium titanyl phosphate waveguide," Opt. Lett. 24, 127-129 (1999). [CrossRef]
  20. X. Mu, I. B. Zotova, Y. J. Ding, and W. P. Risk, "Backward second-harmonic generation in submicron-period ion-exchanged KTiOPO waveguide," Opt. Commun. 181, 153-159 (2000). [CrossRef]
  21. C. Canalias, V. Pasiskevicius, M. Fokine, and F. Laurell, "Backward quasi-phase-matched second-harmonic generation in submicrometer periodically poled flux-grown KTiOPO4," Appl. Phys. Lett. 86, 181105 (2005). [CrossRef]
  22. R. De Salvo, D. J. Hagan, M. Sheik-Bahae, G. I. Stegeman, and E. W. Van Stryland, "Self-focusing and self-defocusing by cascaded second-order effects in KTP," Opt. Lett. 17, 28-30 (1992). [CrossRef]
  23. G. I. Stegeman, M. Sheik-Bahae, E. W. Van Stryland, and G. Assanto, "Large nonlinear phase shifts in second-order nonlinear-optical process," Opt. Lett. 18, 13-15 (1993). [CrossRef] [PubMed]
  24. G. Assanto, G. I. Stegeman, M. Sheik-Bahae, and E. W. Van Stryland, "Coherent interactions for all-optical signal processing via quadratic nonlinearities," IEEE J. Quantum Electron. 31, 673-681 (1995). [CrossRef]
  25. A. Kobyakov, U. Peschel, R. Muschall, G. Assanto, V. P. Torchigin, and F. Lederer, "An analytical approach to all-optical modulation by cascading," Opt. Lett. 20, 1686-1688 (1995). [CrossRef] [PubMed]
  26. G. Assanto, Z. Wang, D. J. Hagan, and E. W. Van Stryland, "All-optical modulation via nonlinear cascading in Type II second harmonic generation," Appl. Phys. Lett. 67, 2120-2122 (1995). [CrossRef]
  27. G. Assanto, "Transistor action through nonlinear cascading in Type II interactions," Opt. Lett. 20, 1595-1597 (1995). [CrossRef] [PubMed]
  28. P. Di Trapani, A. Bramati, S. Minardi, W. Chinaglia, C. Conti, S. Trillo, J. Kilius, and G. Valiulis, "Focusing versus defocusing nonlinearities due to parametric wave mixing," Phys. Rev. Lett. 87, 183902 (2001). [CrossRef]
  29. G. Assanto and G. I. Stegeman, "Nonlinear optics basics: cascading," in Encyclopedia of Modern Optics, R.D.Guenther, D.G.Steel, and L.D.Bayvel, eds. (Elsevier, 2005), Vol. 3, pp. 207-212. [CrossRef]
  30. A. Kobyakov, F. Lederer, O. Bang, and Y. S. Kivshar, "Nonlinear phase shift and all-optical switching in quasi phase matched quadratic media," Opt. Lett. 23, 506-508 (1998). [CrossRef]
  31. A. C. Busacca, M. Cherchi, S. Riva Sanseverino, A. C. Cino, A. Parisi, S. Stivala, L. Colace, and G. Assanto, "Proton exchanged channel waveguides compatible with surface domain engineering in lithium niobate crystals," Conference on Lasers and Electro-Optics (Optical Society of America, 2006), paper CMB4.
  32. M. De Micheli, D. B. Ostrowsky, J. P. Barety, C. Canali, A. Carnera, G. Mazzi, and M. Papuchon, "Crystalline and optical quality of proton exchanged waveguides," J. Lightwave Technol. 4, 743-745 (1986). [CrossRef]
  33. L. Chanvillard, P. Aschièri, P. Baldi, D. B. Ostrowsky, M. De Micheli, L. Huang, and D. J. Bamford, "Soft proton exchange on periodically poled LiNbO3: a simple waveguide fabrication process for highly efficient nonlinear interactions," Appl. Phys. Lett. 76, 1089-1091 (2000). [CrossRef]
  34. J. M. White and P. F. Heidrich, "Optical waveguide refractive index profiles determined from measurement of mode indices: a simple analysis," Appl. Opt. 15, 151-155 (1976). [CrossRef] [PubMed]
  35. Crystal Technology Inc., http://www.crystaltechnology.com/docs/LNopt.pdf.
  36. E. Glavas, J. M. Cabrera, and P. D. Townsend, "A comparison of optical damage in different types of LiNbO3 waveguides," J. Phys. D 22, 611-616 (1989). [CrossRef]
  37. Z. Zheng, A. M. Weiner, K. R. Parameswaran, M.-H. Chou, and M. M. Fejer, "Femtosecond second-harmonic generation in periodically poled lithium niobate waveguides with simultaneous strong pump depletion and group velocity walk-off," J. Opt. Soc. Am. B 19, 839-848 (2002). [CrossRef]
  38. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second-harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992). [CrossRef]
  39. G. I. Stegeman and G. Assanto, "Nonlinear integrated optical devices," in Integrated Optical Circuits and Components: Design and Application, E.J.Murphy, ed. (Dekker, 1999), pp. 381-418; and references therein.
  40. T. Suhara and H. Nishihara, "Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings," IEEE J. Quantum Electron. 26, 1265-1276 (1990). [CrossRef]
  41. C. B. Clausen, O. Bang, and Y. S. Kivshar, "Spatial solitons and induced Kerr effects in quasi-phase-matched quadratic media," Phys. Rev. Lett. 78, 4749-4752 (1997). [CrossRef]
  42. J. T. Manassah and O. R. Cockings, "Induced phase modulation of generated second-harmonic signal," Opt. Lett. 12, 1005-1007 (1987). [CrossRef] [PubMed]
  43. S. Cussat-Blanc, R. Maleck Rassoul, A. Ivanov, E. Freysz, and A. Ducasse, "Influence of cascading phenomena on a type I second-harmonic wave generated by an intense femtosecond pulse: application to the measurement of the effective second-order coefficient," Opt. Lett. 23, 1585-1587 (1998). [CrossRef]
  44. X. F. Cao, R. V. Ramaswamy, and R. Srivastava, "Characterization of annealed proton exchanged LiNbO3 waveguides for nonlinear frequency conversion," J. Lightwave Technol. 10, 1302-1310 (1992). [CrossRef]
  45. Y. N. Korkishko, V. A. Fedorov, M. P. De Micheli, P. Baldi, K. El Hadi, and A. Leycuras, "Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate," Appl. Opt. 36, 7056-7060 (1999).
  46. R. De Salvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, "Infrared to ultraviolet measurements of two-photon absorption in wide bandgap solids," IEEE J. Quantum Electron. 32, 1324-1333 (1996). [CrossRef]
  47. I. A. Kulagin, R. A. Ganeev, R. I. Tugushev, A. I. Ryasnyansky, and T. Usmanov, "Analysis of third-order nonlinear susceptibilities of quadratic nonlinear optical crystals," J. Opt. Soc. Am. B 23, 75-80 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited