OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 8 — Aug. 1, 2007
  • pp: 1669–1676

Design of large-mode-area amplifier fibers resistant to bend-induced distortion

John M. Fini  »View Author Affiliations

JOSA B, Vol. 24, Issue 8, pp. 1669-1676 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1038 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



As fiber amplifiers and lasers achieve higher power, gain fiber designs are pushing toward extremely large-mode area. In this regime, bend-induced distortion of fiber modes becomes large and can severely impact amplifier performance. Previous results describing bend-induced reduction of effective area are reviewed and extended with a numerical analysis of how bend distortion impacts interaction with the gain. Distortion-resistant designs such as the parabolic fiber are shown to substantially improve gain-interaction indicators as well as all other performance metrics simulated, and are predicted to dramatically outperform step-index fibers.

© 2007 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(140.3510) Lasers and laser optics : Lasers, fiber

ToC Category:
Fiber and Waveguide Designs

Original Manuscript: November 29, 2006
Revised Manuscript: February 8, 2007
Manuscript Accepted: February 9, 2007
Published: July 19, 2007

John M. Fini, "Design of large-mode-area amplifier fibers resistant to bend-induced distortion," J. Opt. Soc. Am. B 24, 1669-1676 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Galvanauskas, "Mode-scalable fiber-based chirped pulse amplification systems," IEEE J. Sel. Top. Quantum Electron. 7, 504-517 (2001). [CrossRef]
  2. C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, "Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs," IEEE J. Quantum Electron. 37, 199-206 (2001). [CrossRef]
  3. S. Ramachandran, J. Nicholson, S. Ghalmi, M. Yan, P. Wisk, E. Monberg, and F. Dimarcello, "Light propagation with ultra-large modal areas in optical fibers," Opt. Lett. 31, 1797-1799 (2006). [CrossRef] [PubMed]
  4. P. Wang, L. J. Cooper, J. K. Sahu, and W. A. Clarkson, "Efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser," Opt. Lett. 31, 226-228 (2006). [CrossRef] [PubMed]
  5. W. S. Wong, X. Peng, J. M. McLaughlin, and L. Dong, "Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers," Opt. Lett. 30, 2855-2857 (2005). [CrossRef] [PubMed]
  6. L. Zenteno, J. Wang, D. Walton, B. Ruffin, M. Li, S. Gray, A. Crowley, and X. Chen, "Suppression of Raman gain in single-transverse-mode dual-hole-assisted fiber," Opt. Express 13, 8921-8926 (2005). [CrossRef] [PubMed]
  7. C. J. S. de Matos, J. R. Taylor, T. P. Hansen, K. P. Hansen, and J. Broeng, "All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber," Opt. Express 11, 2832-2837 (2003). [CrossRef] [PubMed]
  8. K. Furusawa, A. Malinowski, J. H. V. Price, T. M. Monro, J. K. Sahu, J. Nilsson, and D. J. Richardson, "Cladding pumped ytterbium-doped fiber laser with holey inner and outer cladding," Opt. Express 9, 714-720 (2001). [CrossRef] [PubMed]
  9. J. C. Baggett, T. M. Monro, K. Furusawa, V. Finazzi, and D. Richardson, "Understanding bending losses in holey optical fibers," Opt. Commun. 227, 317-335 (2003). [CrossRef]
  10. J. M. Fini, "Bend-resistant design of conventional and microstructure fibers with very large mode area," Opt. Express 14, 69-81 (2006). [CrossRef] [PubMed]
  11. G. R. Hadley, R. L. Farrow, and A. V. Smith, "Bent-waveguide modeling of large-mode-area, double-clad fibers for high-power lasers," in Fiber Lasers III: Technology, Systems, and Applications, Proc. SPIE 6102, 61021S (2006).
  12. J. M. Fini, "Bend-compensated design of large-mode-area fibers," Opt. Lett. 31, 1963-1965 (2006). [CrossRef] [PubMed]
  13. R. L. Farrow, D. A. V. Kliner, G. R. Hadley, and A. V. Smith, "Peak-power limits on fiber amplifiers imposed by self-focusing," Opt. Lett. 31, 3423-3425 (2006). [CrossRef] [PubMed]
  14. J. M. Fini, "Intuitive modeling of bend-distortion in large-mode-area fibers," Opt. Lett. (to be published).
  15. J. Baggett, M. Petrovich, J. Hayes, V. Finazzi, F. Poletti, R. Amezcua, N. Broderick, D. Richardson, T. Monro, P. Salter, G. Proudley, and E. O'Driscoll, "Microstructured fibers for high power applications," Nanophotonics for Communication: Materials and Devices II, Proc. SPIE 6017, 40-54 (2005).
  16. J. M. Fini and S. Ramachandran, "Natural bend-distortion immunity of higher-order-mode large-mode-area fibers," Opt. Lett. 32, 748-750 (2007). [CrossRef] [PubMed]
  17. S. Guo, F. Wu, S. Albin, H. Tai, and R. S. Rogowski, "Loss and dispersion analysis of microstructured fibers by finite-difference method," Opt. Express 12, 3341-3352 (2004). [CrossRef] [PubMed]
  18. M. E. Fermann, "Single-mode excitation of multimode fibers with ultrashort pulses," Opt. Lett. 23, 52-54 (1998). [CrossRef]
  19. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, "Single-mode operation of a coiled multimode fiber amplifier," Opt. Lett. 25, 442-444 (2000). [CrossRef]
  20. F. D. Teodoro, J. P. Koplow, S. W. Moore, and D. A. V. Kliner, "Diffraction-limited, 300-kW peak-power pulses from a coiled multimode fiber amplifier," Opt. Lett. 27, 518-520 (2002). [CrossRef]
  21. D. Marcuse, "Influence of curvature on the losses of doubly clad fibers," Appl. Opt. 21, 4208-4213 (1982). [CrossRef] [PubMed]
  22. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, "High-power rod-type photonic crystal fiber laser," Opt. Express 13, 1055-1058 (2005). [CrossRef] [PubMed]
  23. C. R. Giles and E. Desurvire, "Modeling erbium-doped fiber amplifiers," J. Lightwave Technol. 9, 271-283 (1991). [CrossRef]
  24. E. Desurvire, J. L. Zyskind, and C. R. Giles, "Design optimization for efficient erbium-doped fiber amplifiers," J. Lightwave Technol. 8, 1730-1741 (1990). [CrossRef]
  25. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997). [CrossRef]
  26. A. Cucinotta, F. Poli, and S. Selleri, "Design of erbium-doped triangular photonic-crystal-fiber-based amplifiers," IEEE Photon. Technol. Lett. 16, 2027-2029 (2004). [CrossRef]
  27. F. Prudenzano, "Erbium-doped hole-assisted optical fiber amplifier: design and optimization," J. Lightwave Technol. 23, 330 (2005). [CrossRef]
  28. J. Nilsson, R. Paschotta, J. E. Caplen, and D. C. Hanna, "Yb3+-ring-doped fiber for high-energy pulse amplification," Opt. Lett. 22, 1092-1094 (1997). [CrossRef] [PubMed]
  29. J. J. Plant, J. T. Gopinath, B. Chann, D. J. Ripin, R. K. Huang, and P. W. Juodawlkis, "250 mW, 1.5 m monolithic passively mode-locked slab-coupled optical waveguide laser," Opt. Lett. 31, 223-225 (2006). [CrossRef] [PubMed]
  30. J. M. Oh, C. Headley, M. J. Andrejco, A. D. Yablon, and D. J. DiGiovanni, "Increased pulsed amplifier efficiency by manipulating the fiber dopant distribution," in Conference on Lasers and Electro-optics (Optical Society of America, 2006), paper CTuQ3.
  31. M.-Y. Cheng, Y.-C. Chang, A. Galvanauskas, P. Mamidipudi, R. Changkakoti, and P. Gatchell, "High-energy and high-peak-power nanosecond pulse generation with beam quality control in 200-μm core highly multimode Yb-doped fiber amplifiers," Opt. Lett. 30, 358-360 (2005). [CrossRef] [PubMed]
  32. J. M. Fini and S. Ramachandran, "Bend resistance of large-mode-area higher-order-mode fibers," in Lasers and Electro-Optics Society Summer Topical Meeting (IEEE, 2006), paper MC1.3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited