OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 8 — Aug. 1, 2007
  • pp: 1689–1697

Leakage channel optical fibers with large effective area

Liang Dong, Xiang Peng, and Jun Li  »View Author Affiliations

JOSA B, Vol. 24, Issue 8, pp. 1689-1697 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (965 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Leakage channel fibers, where few air holes form a core, can be precisely engineered to create large leakage loss for higher-order modes, while maintaining negligible transmission loss for the fundamental mode. This unique property can be used for designing optical fibers with large effective area, which supports robust fundamental mode propagation. The large air holes in the design also enable the optical fibers to be bend resistant. The principles of design and operation regime are outlined, demonstrating the potential of this approach for optical fibers that propagate a fundamental mode in core diameter exceeding 100 μ m . Performance of a fabricated passive leakage channel fiber, an ytterbium-doped double-clad leakage channel fiber, and an ytterbium-doped polarization-maintaining double-clad leakage channel fiber are also discussed.

© 2007 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(140.3510) Lasers and laser optics : Lasers, fiber

ToC Category:
Fiber and Waveguide Designs

Original Manuscript: October 31, 2006
Manuscript Accepted: December 9, 2006
Published: July 19, 2007

Liang Dong, Xiang Peng, and Jun Li, "Leakage channel optical fibers with large effective area," J. Opt. Soc. Am. B 24, 1689-1697 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast Lasers (Dekker, 2003), Chap. 4.
  2. J. Kim, P. Dupriez, C. Codemard, J. Nilsson, and J. K. Sahu, "Suppression of stimulated Raman scattering in a high power Yb-doped fiber amplifier using a W-type core with fundamental mode cut-off," Opt. Express 14, 5103-5113 (2006). [CrossRef] [PubMed]
  3. A. Kobyakov, S. Kumar, D. Chowdhury, A. B. Ruffin, M. Sauer, S. Bickham, and R. Mishra, "Design concept for optical fibers with enhanced SBS threshold," Opt. Express 13, 5338-5346 (2005). [CrossRef] [PubMed]
  4. M. E. Fermann, "Single-mode excitation of multimode fibers with ultrashort pulses," Opt. Lett. 23, 52-54 (1998). [CrossRef]
  5. J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, "Low nonliearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier," Opt. Express 12, 1313-1319 (2004). [CrossRef] [PubMed]
  6. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, "High-power rod-type photonic crystal fiber laser," Opt. Express 13, 1055-1058 (2005). [CrossRef] [PubMed]
  7. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, "Extended single-mode photonic crystal fiber laser," Opt. Express 14, 2715-2720 (2006). [CrossRef] [PubMed]
  8. J. Fini, "Design of solid and microstructure fibers for suppression of higher-order modes," Opt. Express 13, 3477-3490 (2005). [CrossRef] [PubMed]
  9. L. Lavoute, P. Roy, A. Desfarges-Berthelemot, V. Kermène, and S. Février, "Design of microstructured single-mode fiber combining large mode area and high rare earth ion concentration," Opt. Express 14, 2994-2999 (2006). [CrossRef] [PubMed]
  10. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, "Light propagation with ultralarge modal areas in optical fibers," Opt. Lett. 31, 1797-1799 (2006). [CrossRef] [PubMed]
  11. S. Ramachandran, M. F. Yan, J. Jasapara, P. Wisk, S. Ghalmi, E. Monberg, and F. V. Dimarcello, "High-energy (nanojoule) femtosecond pulse delivery with record dispersion higher-order mode fiber," Opt. Lett. 30, 3225-3227 (2005). [CrossRef] [PubMed]
  12. W. S. Wong, X. Peng, J. M. McLaughlin, and L. Dong, "Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers," Opt. Lett. 30, 2855-2857 (2005). [CrossRef] [PubMed]
  13. X. Peng and L. Dong, "Fundamental-mode operation in polarization-maintaining ytterbium-doped fiber with an effective area of 1400 μm2," presented at the European Conference on Optical Communications, Nice, France, September, 2006, post-deadline paper Th4.2.1.
  14. J. C. Baggett, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, "Understanding bending losses in holey optical fibers," Opt. Commun. 227, 317-335 (2003). [CrossRef]
  15. M. D. Nielsen, N. A. Mortensen, M. Albertsen, J. R. Folkenberg, A. Bjarklev, and D. Bonacinni, "Predicting macro-bending loss for large-mode area photonic crystal fibers," Opt. Express 12, 1775-1779 (2004). [CrossRef] [PubMed]
  16. J. Sakai and T. Kimura, "Bending loss of propagation modes in arbitrary-index profile optical fibers," Appl. Opt. 17, 1499-1506 (1978). [CrossRef] [PubMed]
  17. J. Sakai, "Simplified bending loss formula for single mode optical fiber," Appl. Opt. 18, 951-952 (1979). [CrossRef] [PubMed]
  18. K. Saitoh and M. Koshiba, "Empirical relations for simple design of photonic crystal fibers," Opt. Express 13, 267-274 (2004). [CrossRef]
  19. A. Mafi and J. V. Moloney, "Beam quality of photonic-crystal fibers," J. Lightwave Technol. 23, 2267-2270 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited