OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 8 — Aug. 1, 2007
  • pp: 1698–1706

Analysis of photonic crystal waveguide discontinuities using the mode matching method and application to device performance evaluation

Athanasios Theocharidis, Thomas Kamalakis, and Thomas Sphicopoulos  »View Author Affiliations


JOSA B, Vol. 24, Issue 8, pp. 1698-1706 (2007)
http://dx.doi.org/10.1364/JOSAB.24.001698


View Full Text Article

Enhanced HTML    Acrobat PDF (511 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The application of the mode-matching (MM) method in the case of photonic crystal waveguide discontinuities is presented. The structure under consideration is divided into a number of cells, and the modes of each cell are calculated by an alternative formulation of the plane-wave expansion (PWE) method. This formulation allows the calculation of both guided and evanescent modes at a given frequency. A matrix equation is then formed relating the modal amplitudes at the beginning and the end of the structure. The accuracy of the MM method is compared to the finite-difference frequency-domain (FDFD) method and the finite-difference time-domain (FDTD) method, and good agreement is observed. The MM method requires far fewer resources than the FDFD and the FDTD methods while providing a useful physical insight to the calculation of the frequency response of waveguide discontinuities. The method is also applied to the calculation of power loss due to structural fabrication-induced variations.

© 2007 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(230.0230) Optical devices : Optical devices

ToC Category:
Fiber and Waveguide Designs

History
Original Manuscript: August 30, 2006
Revised Manuscript: February 10, 2007
Manuscript Accepted: February 15, 2007
Published: July 19, 2007

Citation
Athanasios Theocharidis, Thomas Kamalakis, and Thomas Sphicopoulos, "Analysis of photonic crystal waveguide discontinuities using the mode matching method and application to device performance evaluation," J. Opt. Soc. Am. B 24, 1698-1706 (2007)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-24-8-1698


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crytals, Molding the Flow of Light (Princeton U. Press, 1995).
  2. K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, 2001).
  3. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996). [CrossRef] [PubMed]
  4. Y. Hibino, "Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index contrast-based PLCs," IEEE J. Sel. Top. Quantum Electron. 8, 1090-1101 (2002). [CrossRef]
  5. I. Vurgaftman and J. R. Meyer, "Photonic-crystal distributed-feedback quantum cascade lasers," IEEE J. Quantum Electron. 38, 592-602 (2002). [CrossRef]
  6. M. F. Yanik, S. Fan, M. Soljacic, and J. D. Joannopoulos "All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry," Opt. Lett. 28, 2506-2508 (2003). [CrossRef] [PubMed]
  7. M. Koshiba, "Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers," J. Lightwave Technol. 19, 1970-1975 (2001). [CrossRef]
  8. T. Matsumoto and T. Baba, "Photonic crystal k-vector superprism," J. Lightwave Technol. 22, 917-922 (2004). [CrossRef]
  9. M. Imada, S. Noda, A. Chutinan, M. Mochizuki, and T. Tanaka, "Channel drop filter using a single defect in a 2-D photonic crystal slab waveguide," J. Lightwave Technol. 20, 873-878 (2002). [CrossRef]
  10. R. Costa, A. Melloni, and M. Martinelli, "Bandpass resonant filters in photonic-crystal waveguides," IEEE Photon. Technol. Lett. 15, 401-403 (2003). [CrossRef]
  11. D. Park, S. Kim, I. Park, and H. Lim, "Higher order optical resonant filters based on coupled defect resonators in photonic crystals," J. Lightwave Technol. 23, 1923-1928 (2005). [CrossRef]
  12. N. Stefanou and A. Modinos, "Impurity bands in photonic insulators," Phys. Rev. B 57, 12127-12133, (1998). [CrossRef]
  13. C. K. Madsen, "General IIR optical filter design for WDM applications using all-pass filters," J. Lightwave Technol. 18, 860-868, (2000). [CrossRef]
  14. B. E. Little, S. T. Chu, W. Pan, D. Ripin, T. Kaneko, Y. Kokubun, and E. Ippen, "Vertically coupled glass microring resonator channel dropping filters," IEEE Photon. Technol. Lett. 11, 215-217 (1999). [CrossRef]
  15. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: a proposal and analysis," Opt. Lett. 24, 711-713 (1999). [CrossRef]
  16. E. Heebner, R. W. Boyd, and Q-H. Park, "SCISSOR solitons and other novel propagation effects in microresonator-modified waveguides," J. Opt. Soc. Am. B 19, 722-731 (2002). [CrossRef]
  17. J. B. Khurgin, "Expanding the bandwidth of slow-light photonic devices based on coupled resonators," Opt. Lett. 30, 513-515 (2005). [CrossRef] [PubMed]
  18. A. Tafflove and S. Hagness, Computational Electrodynamics: the Finite Difference Time-Domain Method (Artech House, 2000).
  19. M. Koshiba, Y. Tsuji, and S. Sasaki "High-performance absorbing boundary conditions for photonic crystal waveguide simulations," IEEE Microw. Wirel. Compon. Lett. 11, 152-154 (2001). [CrossRef]
  20. S. D. Wu and E. N. Glytsis, "Finite-number-of-periods holographic gratings with finite-width incident beams: analysis using the finite-difference frequency-domain methods," J. Opt. Soc. Am. A 19, 2018-2029 (2002). [CrossRef]
  21. G. Veronis, R. W. Dutton, and S. Fan, "Method for sensitivity analysis of photonic crystal devices," Opt. Lett. 29, 2288-2290 (2004). [CrossRef] [PubMed]
  22. H. Shigesawa and M. Tsuji, "A new equivalent network method for the analyzing discontinuity properties of open dielectric waveguides," IEEE Trans. Microwave Theory Tech. 37, 3-14 (1989). [CrossRef]
  23. R. E. Collin, Field Theory of Guided Waves (McGraw-Hill, 1992).
  24. M. Skorobogatiy, M. Ibanescu, S. G. Johnson, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, and Y. Fink, "Analysis of general geometric scaling perturbations in a transmitting waveguide: fundamental connection between polarizarion-mode dispersion and group-velocity dispersion," J. Opt. Soc. Am. B 19, 2867-2875 (2002). [CrossRef]
  25. S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, "Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals," Phys. Rev. E 66, 066608 (2002). [CrossRef]
  26. M. L. Povinelli, S. G. Johnson, E. Lidorikis, and J. D. Joannopoulos, "Effect of a photonic band gap on scattering from waveguide disorder," Appl. Phys. Lett. 84, 3639-3641 (2004). [CrossRef]
  27. D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic Press, 1991).
  28. G. A. Gesell and I. R. Ciric, "Recurrence model analysis for multiple waveguide discontinuities and its application to circular structures," IEEE Trans. Microwave Theory Tech. 41, 484-490 (1993). [CrossRef]
  29. T. Kamalakis and T. Sphicopoulos, "Numerical study of the implications of size nonuniformities in the performance of photonic crystal couplers using couple mode theory," IEEE J. Quantum Electron. 41, 863-871 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited