OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 8 — Aug. 1, 2007
  • pp: 1793–1802

Theoretical study of an actively mode-locked fiber laser stabilized by an intracavity Fabry–Perot etalon: linear regime

Yurij Parkhomenko, Moshe Horowitz, Curtis R. Menyuk, and Thomas F. Carruthers  »View Author Affiliations

JOSA B, Vol. 24, Issue 8, pp. 1793-1802 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (187 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study theoretically the effect of an intracavity etalon on actively mode-locked fiber lasers by solving the master equation for the laser when nonlinearity in the laser is negligible. The first-order dispersion of the material inside the etalon can increase the pulse duration by a factor of 10. The minimum pulse duration is obtained when the relative frequency offset between the free spectral range of the etalon and the modulation frequency of the active mode locking is of the order of 10 2 . The group-velocity dispersion of the material inside the etalon as well as the finesse of the etalon affect the total cavity dispersion. The etalon helps to suppress both a simultaneous lasing in several supermodes and lasing in higher-order pulse modes of the master equation. The etalon also helps lock the central wavelength of the laser to the etalon comb.

© 2007 Optical Society of America

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(060.2310) Fiber optics and optical communications : Fiber optics
(140.3410) Lasers and laser optics : Laser resonators
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:
Ultrafast Fiber Lasers

Original Manuscript: December 1, 2006
Manuscript Accepted: January 9, 2007
Published: July 19, 2007

Yurij Parkhomenko, Moshe Horowitz, Curtis R. Menyuk, and Thomas F. Carruthers, "Theoretical study of an actively mode-locked fiber laser stabilized by an intracavity Fabry-Perot etalon: linear regime," J. Opt. Soc. Am. B 24, 1793-1802 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. R. Clark, T. F. Carruthers, P. J. Matthews, and I. N. Duling III, "Phase noise measurements of ultrafast 10 GHz harmonically modelocked fibre laser," Electron. Lett. 35, 720-721 (1999). [CrossRef]
  2. M. E. Grein, H. A. Haus, Y. Chen, and E. P. Ippen, "Quantum-limited timing jitter in actively modelocked lasers," IEEE J. Quantum Electron. 40, 1458-1470 (2004). [CrossRef]
  3. M. Horowitz, C. R. Menyuk, T. F. Carruthers, and I. N. Dulling III, "Theoretical and experimental study modelocked fiber laser for optical communication systems," J. Lightwave Technol. 18, 1565-1574 (2000). [CrossRef]
  4. G. T. Harvey and L. F. Mollenauer, "Harmonically mode-locked fiber ring laser with an internal Fabry-Perot stabilizer for soliton transmission," Opt. Lett. 18, 107-109 (1993). [CrossRef] [PubMed]
  5. J. E. Malowicki, M. L. Fanto, M. J. Hayduk, and P. J. Delfyett, Jr., "Harmonically mode-locked glass waveguide laser with 21-fs timing jitter," IEEE Photon. Technol. Lett. 17, 40-42 (2005). [CrossRef]
  6. S. Gee, F. Quinlan, S. Ozharar, and P. J. Delfyett, Jr., "Simultaneous optical comb frequency stabilization and super-mode noise suppression of harmonically mode-locked semiconductor ring laser using an intracavity etalon," IEEE Photon. Technol. Lett. 17, 199-201 (2005). [CrossRef]
  7. J. S. Way, J. Goldhar, and G. L. Burdge, "Active harmonic modelocking of an erbium fiber laser with intracavity Fabry-Perot filters," J. Lightwave Technol. 15, 1171-1180 (1997). [CrossRef]
  8. D. J. Kuizenga and A. E. Siegman, "FM and AM mode locking of the homogeneous laser--Part I: theory," IEEE J. Quantum Electron. QE-6, 694-708 (1970). [CrossRef]
  9. R. J. Jones and Jean-Claude Diels, "Stabilization of femtosecond lasers for optical frequency metrology and direct optical to radio frequency," Phys. Rev. Lett. 86, 3288-3291 (2001). [CrossRef] [PubMed]
  10. H. A. Haus, "Mode-locking of lasers," IEEE J. Sel. Top. Quantum Electron. 6, 1173-1184 (2000). [CrossRef]
  11. Ch. Fabry and A. Perot, "Thérie et applications d'une nouvelle méthode interférentielle," Ann. Chim. Phys. 16, 115-144 (1899).
  12. M.Bass, ed., Handbook of Optics (McGraw-Hill, 1995), Vol. 1.
  13. S. Choi, M. Yoshida, and M. Nakazawa, "Measurements of longitudinal linewidths of 10 GHz, picosecond mode-locked erbium-doped fiber lasers using a heterodyne detection method," Trans. Inst. Electron. Commun. Eng. Jpn., Part C J86-C, 1054-1062 (2003).
  14. F. K. Fatemi, J. W. Lou, and T. F. Carruthers, "Frequency comb linewidth of an actively mode-locked fiber laser," Opt. Lett. 29, 944-946 (2004). [CrossRef] [PubMed]
  15. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995), Chap. 1.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited