OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 8 — Aug. 1, 2007
  • pp: 1867–1873

Multistability in the emission frequency of a semiconductor laser

M. Oriá, B. Farias, T. Sorrentino, and M. Chevrollier  »View Author Affiliations

JOSA B, Vol. 24, Issue 8, pp. 1867-1873 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (545 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the observation of frequency multistability in a semiconductor laser emission. We experimentally study the spectral behavior of a semiconductor laser under a spectrally filtered orthogonal-polarization feedback and show that using a reinjected signal having both absorptive and dispersive lineshapes, we are able to control the laser spectral response exhibiting bistability or multistability. We describe all the observed spectra, considering only the linear response of the laser and both the amplitude and phase filtering of the reinjected orthogonal field.

© 2007 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.3570) Lasers and laser optics : Lasers, single-mode
(190.1450) Nonlinear optics : Bistability

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 27, 2006
Revised Manuscript: March 26, 2007
Manuscript Accepted: April 12, 2007
Published: July 19, 2007

M. Oriá, B. Farias, T. Sorrentino, and M. Chevrollier, "Multistability in the emission frequency of a semiconductor laser," J. Opt. Soc. Am. B 24, 1867-1873 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. A. Lugiato, "Theory of optical bistability," in Progress in Optics, E.Wolf, ed. (North-Holland, 1984), vol. 21, p. 71, and references therein. [CrossRef]
  2. H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, "Differential gain and bistability using a sodium-filled fabry-perot interferometer," Phys. Rev. Lett. 36, 1135-1138 (1976). [CrossRef]
  3. A. T. Rosenberger, L. A. Orozco, and H. J. Kimble, "Observation of absorptive bistability with two-level atoms in a ring cavity," Phys. Rev. A 28, 2569-2572 (1983). [CrossRef]
  4. A. Joshi and M. Xiao, "Optical multistability in three-level atoms inside an optical ring cavity," Phys. Rev. Lett. 91, 143904 (2003). [CrossRef] [PubMed]
  5. B. Farias, T. Passerat de Silans, M. Chevrollier, and M. Oriá, "Frequency bistability of a semiconductor laser under a frequency-dependent feedback," Phys. Rev. Lett. 94, 173902 1-4 (2005). [CrossRef]
  6. G. H. M. Van Tartwijk and D. Lenstra, "Semiconductor lasers with optical injection and feedback," J. Opt. B: Quantum Semiclassical Opt. 7, 87-143 (1995). [CrossRef]
  7. R. Lang and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J. Quantum Electron. 16, 347-355 (1980). [CrossRef]
  8. G. Huyet, S. Balle, M. Giudici, C. Green, G. Giacomelli, and J. R. Tredicce, "Low frequency fluctuations and multimode operation of a semiconductor laser with optical feedback," Opt. Commun. 149, 341-347 (1998). [CrossRef]
  9. D. W. Sukow, A. Gavrielides, T. Erneux, M. J. Baracco, Z. A. Parmenter, and K. L. Blackburn, "Two-field description of chaos synchronization in diode lasers with incoherent optical feedback and injection," Phys. Rev. A 72, 043818 (2005). [CrossRef]
  10. H. Erzgraber, B. Krauskopf, D. Lenstra, A. P. A. Fischer, and G. Vemuri, "Frequency versus relaxation oscillations in a semiconductor laser with coherent filtered optical feedback," Phys. Rev. E 73, 055201(R) (2006). [CrossRef]
  11. P. Saboureau, J.-P. Foing, and P. Schanne, "Injection-locked semiconductor lasers with delayed optoelectronic feedback," IEEE J. Quantum Electron. 33, 1582-1591 (1997). [CrossRef]
  12. R. Badii, N. Matuschek, T. Pliska, J. Troger, and B. Schmidt, "Dynamics of multimode diode lasers with strong, frequency-selective optical feedback," Phys. Rev. E 68, 036605 (2003). [CrossRef]
  13. O. K. Andersen, A. P. A. Fischer, I. C. Lane, E. Louvergneaux, S. Stolte, and D. Lenstra, "Experimental stability diagram of a diode laser subject to weak phase-conjugate feedback from a rubidium vapor cell," IEEE J. Quantum Electron. 35, 577-582 (1999). [CrossRef]
  14. M. Giudici, L. Giuggioli, C. Green, and J. R. Tredicce, "Dynamical behavior of semiconductor lasers with frequency selective optical feedback," Chaos, Solitons Fractals 10, 811-818 (1999). [CrossRef]
  15. A. P. A. Fischer, M. Yousefi, D. Lenstra, M. Carter, and G. Vemuri, "Filtered optical feedback induced frequency dynamics in semiconductor lasers," Phys. Rev. Lett. 92, 023901 (2004). [CrossRef] [PubMed]
  16. A. Gavrielides, T. Erneux, D. W. Sukow, G. Burner, T. McLachlan, J. Miller, and J. Amonettev, "Square-wave self-modulation in diode lasers with polarization-rotated optical feedback," Opt. Lett. 31, 2006-2008 (2006). [CrossRef] [PubMed]
  17. R. Ju, Y. Hong, and P. Spencer, "Semiconductor lasers subject to polarization-rotated optical feedback," IEE Proc.: Optoelectron. 153, 131-137 (2006). [CrossRef]
  18. D. Cheng, T. Yen, E. Liu, and K. Chuang, "Suppressing mode hopping in semiconductor lasers by orthogonal-polarization optical feedback," IEEE Photonics Technol. Lett. 16, 1435-1437 (2004). [CrossRef]
  19. T. Heil, A. Uchida, P. Davis, and T. Aida, "TE-TM dynamics in a semiconductor laser subject to polarization-rotated optical feedback," Phys. Rev. A 68, 033811 (2003). [CrossRef]
  20. J. Houlihan, G. Huyet, and J. G. McInerney, "Dynamics of a semiconductor laser with incoherent optical feedback," Opt. Commun. 199, 175-179 (2001). [CrossRef]
  21. H. Yasaka, Y. Yoshikuni, and M. Watanabe, "Measurement of gain saturation coefficient of a DFB laser for lasing mode control by orthogonal polarization light," IEEE J. Quantum Electron. 27, 2248-2255 (1991). [CrossRef]
  22. H. Yasaka and H. Kawaguchi, "Linewidth reduction and optical frequency stabilization of a distributed feedback laser by incoherent optical negative feedback," Appl. Phys. Lett. 53, 1360-1362 (1988). [CrossRef]
  23. H. Chang, H. Wu, C. Xie, and H. Wang, "Controlled shift of optical bistability hysteresis curve and storage of optical signals in a four-level atomic system," Phys. Rev. Lett. 93, 213901 (2004). [CrossRef] [PubMed]
  24. C. Masoller, T. Sorrentino, M. Chevrollier, and M. Oriá, "Bistability in semiconductor lasers with polarization-rotated frequency-dependent," IEEE J. Quantum Electron. 43, 261-268 (2007). [CrossRef]
  25. The amplitude stability of the laser under orthogonal feedback occurs for operation above about the double of the threshold current, see .
  26. M. Yousefi, D. Lenstra, G. Vemuri, and A. Fischer, "Control of nonlinear dynamics of a semiconductor laser with filtered optical feedback," IEE Proc.: Optoelectron. 148, 233-237 (2001). [CrossRef]
  27. A. F. A. da Rocha, P. C. S. Segundo, M. Chevrollier, and M. Oriá, "Diode laser coupled to an atomic line by incoherent optical negative feedback," Appl. Phys. Lett. 84, 179-181 (2004). [CrossRef]
  28. J. E. Bjorkholm and A. Ashkin, "cw self-focusing and self-trapping of light in sodium vapor," Phys. Rev. Lett. 32, 129-132 (1974). [CrossRef]
  29. See, e. g., T. Ackemann, T. Scholz, Ch. Vorgerd, J. Nalik, L. M. Hoffer, and G. L. Lippi, "Self-lensing in sodium vapor: influence of saturation, atomic diffusion and radiation trapping," Opt. Commun. 147, 411-428 (1998), and references therein. [CrossRef]
  30. Equation only gives the new frequency (ν) as a function of the free-laser frequency (νo). In order to reproduce the experimental transmission of the analysis filter (absorption cell, external to the feedback loop), which converts the emitted frequency ν into an amplitude signal fp(ν), we plot the lineshape fp(ν) as a function of νo.
  31. M. Kitano, T. Yabuzaki, and T. Ogawa, "Optical tristability," Phys. Rev. Lett. 46, 926-929 (1981). [CrossRef]
  32. S. Cecchi, G. Giusfredi, E. Petriella, and P. Salieri, "Observation of optical tristability in sodium vapors," Phys. Rev. Lett. 49, 1928-1931 (1982). [CrossRef]
  33. The hysteresis cycles are either counterclockwise, as in the pure absorptive hysteresis, or clockwise, occurring when the two mechanisms provoking hysteresis are present. See, for instance, A. Joshi, W. Yang, and M. Xiao, "Hysteresis loop with controllable shape and direction in an optical ring cavity," Phys. Rev. A 70, 041802(R) (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited