OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 8 — Aug. 1, 2007
  • pp: 1916–1921

Experimental confirmation of the general solution to the multiple-phase-matching problem

Alon Bahabad, Noa Voloch, Ady Arie, and Ron Lifshitz  »View Author Affiliations


JOSA B, Vol. 24, Issue 8, pp. 1916-1921 (2007)
http://dx.doi.org/10.1364/JOSAB.24.001916


View Full Text Article

Enhanced HTML    Acrobat PDF (487 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We recently described a general solution to the phase-matching problem that arises when one wishes to perform an arbitrary number of nonlinear optical processes in a single medium [ Phys. Rev. Lett. 95, 133901 (2005) ]. Here we outline in detail the implementation of the solution for a one-dimensional photonic quasicrystal, which acts as a simultaneous frequency doubler for three independent optical beams. We confirm this solution experimentally using an electric-field poled K Ti O P O 4 crystal. In optimizing the device, we find—contrary to common practice—that simple duty cycles of 100% and 0% may yield the highest efficiencies, and we show that our device is more efficient than a comparable device based on periodic quasi-phase matching.

© 2007 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4160) Nonlinear optics : Multiharmonic generation
(190.4360) Nonlinear optics : Nonlinear optics, devices

ToC Category:
Nonlinear Optics

History
Original Manuscript: January 16, 2007
Revised Manuscript: April 16, 2007
Manuscript Accepted: April 21, 2007
Published: July 19, 2007

Citation
Alon Bahabad, Noa Voloch, Ady Arie, and Ron Lifshitz, "Experimental confirmation of the general solution to the multiple-phase-matching problem," J. Opt. Soc. Am. B 24, 1916-1921 (2007)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-24-8-1916


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918-1939 (1962). [CrossRef]
  2. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation--tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992). [CrossRef]
  3. S.-N. Zhu, Y.-Y. Zhu, and N.-B. Ming, "Quasi-phase-matched third-harmonic generation in a quasiperiodic optical superlattice," Science 278, 843-846 (1997). [CrossRef]
  4. Y. S. Kivshar, A. A. Sukhorukov, and S. M. Saltiel, "Two-color multistep cascading and parametric soliton-induced waveguides," Phys. Rev. E 60, R5056-R5059 (1999). [CrossRef]
  5. R. C. Pooser and O. Pfister, "Observation of triply coincident nonlinearities in periodically poled KTiOPO4," Opt. Lett. 30, 2635-2637 (2005). [CrossRef] [PubMed]
  6. G. I. Stegeman, D. J. Hagan, and L. Torner, "χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons," Opt. Quantum Electron. 28, 1691-1740 (1996). [CrossRef]
  7. T. Ellenbogen, A. Arie, and S. M. Saltiel, "Noncollinear double quasi phase matching in one-dimensional poled crystals," Opt. Lett. 32, 262-264 (2007). [CrossRef] [PubMed]
  8. V. Berger, "Nonlinear photonic crystals," Phys. Rev. Lett. 81, 4136-4139 (1998). [CrossRef]
  9. N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, "Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal," Phys. Rev. Lett. 84, 4345-4348 (2000). [CrossRef] [PubMed]
  10. A. Arie, N. Habshoosh, and A. Bahabad, "Quasi phase matching in two-dimensional nonlinear photonic crystals," Opt. Quantum Electron. (to be published).
  11. K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, "Multiple nonlinear optical interactions with arbitrary wave vector differences," Phys. Rev. Lett. 88, 023903 (2001). [CrossRef]
  12. H. Liu, S. N. Zhu, Y. Y. Zhu, N. B. Ming, X. C. Lin, W. J. Ling, A. Y. Yao, and Z. Y. Xu, "Multiple-wavelength second-harmonic generation in aperiodic optical superlattices," Appl. Phys. Lett. 81, 3326-3328 (2002). [CrossRef]
  13. J. Liao, J. L. He, H. Liu, J. Du, F. Xu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, "Red, yellow, green and blue--four-color light from a single, aperiodically poled LiTaO3 crystal," Appl. Phys. B 78, 265-267 (2004). [CrossRef]
  14. M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, "Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides," Opt. Lett. 24, 1157-1159 (1999). [CrossRef]
  15. R. T. Bratfalean, A. C. Peacock, N. G. R. Broderick, K. Gallo, and R. Lewen, "Harmonic generation in a two-dimensional nonlinear quasicrystal," Opt. Lett. 30, 424-426 (2005). [CrossRef] [PubMed]
  16. R. Lifshitz, A. Arie, and A. Bahabad, "Photonic quasicrystals for nonlinear optical frequency conversion," Phys. Rev. Lett. 95, 133901 (2005). [CrossRef] [PubMed]
  17. R. Lifshitz, "What is a crystal?" Z. Kristallogr. 222, 313-319 (2007). [CrossRef]
  18. N. de Bruijn, "Algebraic theory of Penrose's non-periodic tilings of the plane," Proc. K. Ned. Akad. Wet., Ser. A: Math. Sci. 84, 39-66 (1981).
  19. F. Gahler and J. Rhyner, "Equivalence of the generalised grid and projection methods for the construction of quasiperiodic tilings," J. Phys. A 19, 267-277 (1986). [CrossRef]
  20. D. A. Rabson, T.-L. Ho, and N. D. Mermin, "Aperiodic tilings with nonsymmorphic space groups p2jgm," Acta Crystallogr. 44, 678-688 (1988). http://dx.doi.org/10.1107/S0108767388003733.
  21. D. A. Rabson, T.-L. Ho, and N. D. Mermin, "Space groups of quasicrystallographic tilings," Acta Crystallogr. 45, 538-547 (1989). http://dx.doi.org/10.1107/S0108767389003302. [CrossRef]
  22. M. Senechal, Quasicrystals and Geometry (Cambridge U. Press, 1995), pp. 162-166.
  23. K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, "Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4," Appl. Phys. Lett. 74, 914-916 (1999). [CrossRef]
  24. S. Emanueli and A. Arie, "Temperature-dependent dispersion equations for KTiOPO4 and KTiOAsO4," Appl. Opt. 42, 6661-6665 (2003). [CrossRef] [PubMed]
  25. A. H. Norton and C. M. de Sterke, "Optimal poling of nonlinear photonic crystals for frequency conversion," Opt. Lett. 28, 188-190 (2003). [CrossRef] [PubMed]
  26. R. Lifshitz, "Symmetry of magnetically ordered quasicrystals," Phys. Rev. Lett. 80, 2717-2720 (1998). [CrossRef]
  27. R. Lifshitz, "Magnetic quasicrystals: what can we expect to see in their neutron diffraction data?" Mater. Sci. Eng., A 294, 508-511 (2000). [CrossRef]
  28. K. Fradkin-Kashi and A. Arie, "Multiple-wavelength quasi-phase-matched nonlinear interactions," IEEE J. Quantum Electron. 35, 1649-1656 (1999). [CrossRef]
  29. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, "First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation," Appl. Phys. Lett. 62, 435-436 (1993). [CrossRef]
  30. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  31. G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys. 39, 3596-3639 (1968). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited