OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 8 — Aug. 1, 2007
  • pp: 1942–1950

Guided modes of one-dimensional photonic bandgap waveguides

Jie Li and Kin Seng Chiang  »View Author Affiliations

JOSA B, Vol. 24, Issue 8, pp. 1942-1950 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (959 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using a ray-optics model, we analyze the guided modes of a slab waveguide that consists of a low-index layer sandwiched between two photonic bandgap structures. Normalized band diagrams and dispersion curves for the TE and TM waves are investigated in detail, and a nomenclature system for the guided modes based on the mode-field patterns in the waveguide is proposed. The cutoff conditions and the confinement factors of the modes are discussed. The effects of varying the physical parameters of the waveguide on the dispersion characteristics of the modes are also analyzed.

© 2007 Optical Society of America

OCIS Codes
(030.4070) Coherence and statistical optics : Modes
(130.2790) Integrated optics : Guided waves
(230.4170) Optical devices : Multilayers
(230.7370) Optical devices : Waveguides
(230.7400) Optical devices : Waveguides, slab

ToC Category:
Optical Devices

Original Manuscript: January 10, 2007
Manuscript Accepted: April 6, 2007
Published: July 19, 2007

Jie Li and Kin Seng Chiang, "Guided modes of one-dimensional photonic bandgap waveguides," J. Opt. Soc. Am. B 24, 1942-1950 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Yeh, A. Yariv, and C. S. Hong, "Electromagnetic propagation in periodic stratified media. I. General theory," J. Opt. Soc. Am. 67, 423-438 (1977). [CrossRef]
  2. P. Yeh and A. Yariv, "Bragg reflection waveguides," Opt. Commun. 19, 427-430 (1976). [CrossRef]
  3. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional Reflector," Science 282, 1679-1682 (1998). [CrossRef] [PubMed]
  4. D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, "Observation of total omnidirectional reflection from a one-dimensional dielectric lattice," Appl. Phys. A 68, 25-28 (1999). [CrossRef]
  5. H. Taniyama, "Waveguide structures using one-dimensional photonic crystal," J. Appl. Phys. 91, 3511-3515 (2002). [CrossRef]
  6. S. R. A. Dods, "Bragg reflection waveguide," J. Opt. Soc. Am. A 6, 1465-1476 (1989). [CrossRef]
  7. T. Hori, "Enhancement of field confinement by deforming perfectly periodic structures in one-dimensional slab waveguides," Opt. Commun. 230, 161-165 (2004). [CrossRef]
  8. J.-S. I. Y. Park, and H. Jeon, "Optimal design for one-dimensional photonic crystal waveguide," J. Lightwave Technol. 22, 509-513 (2004). [CrossRef]
  9. B. R. West and A. S. Helmy, "Properties of the quarter-wave Bragg reflection waveguide: theory," J. Opt. Soc. Am. B 23, 1207-1220 (2006). [CrossRef]
  10. B. Nistad, M. W. Haakestad, and J. Skaar, "Dispersion properties of planar Bragg waveguides," Opt. Commun. 265, 153-160 (2006). [CrossRef]
  11. M. Dainese, M. Swillo, L. Wosinski, and L. Thylen, "Directional coupler wavelength selective filter based on dispersive Bragg reflection waveguide," Opt. Commun. 260, 514-521 (2006). [CrossRef]
  12. A. Mizrahi and L. Schachter, "Bragg reflection waveguides with a matching layer," Opt. Express 12, 3156-3170 (2004). [CrossRef] [PubMed]
  13. P. Yeh, A. Yariv, and E. Marom, "Theory of Bragg fiber," J. Opt. Soc. Am. 68, 1196-1201 (1978). [CrossRef]
  14. F. Brechet, P. Roy, J. Marcou, and D. Pagnoux, "Singlemode propagation into depressed-core-index photonic-bandgap fibre designed for zero-dispersion propagation at short wavelengths," Electron. Lett. 36, 514-515 (2000). [CrossRef]
  15. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996). [CrossRef] [PubMed]
  16. M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, "Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs," IEEE J. Quantum Electron. 38, 736-742 (2002). [CrossRef]
  17. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999). [CrossRef] [PubMed]
  18. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. Sterke, "Resonances in microstructured optical waveguides," Opt. Express 11, 1243-1251 (2003). [CrossRef] [PubMed]
  19. B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. County, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Low loss (1.7 dB/km) hollow core photonic bandgap fiber," in Proceedings of Optical Fiber Communications Conference (IEEE, 2004), paper PDP24.
  20. S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, "Guiding 1.5 μm light in photonic crystals based on dielectric rods," Appl. Phys. Lett. 85, 6110-6112 (2004). [CrossRef]
  21. V. V. Pobochii, T. Tada, and T. Kanayama, "Photonic-band-gap properties of two-dimensional lattices of Si nanopillars," J. Appl. Phys. 91, 3299-3305 (2002). [CrossRef]
  22. A. D. Orazio, M. D. Sario, V. Petruzzelli, and F. Prudenzano, "Photonic band gap filter for wavelength division multiplexer," Opt. Express 11, 230-239 (2003). [CrossRef] [PubMed]
  23. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, "Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design," Science 293, 1123-1125 (2001). [CrossRef] [PubMed]
  24. W. D. Zhou, J. Sabarinathan, B. Kochman, E. Berg, O. Qasaimeh, S. Pang, and P. Bhattacharya, "Electrically injected single-defect photonic bandgap surface-emitting laser at room temperature," Electron. Lett. 36, 1541-1542 (2000). [CrossRef]
  25. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited