OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 8 — Aug. 1, 2007
  • pp: 2013–2022

Antireflection coating for quantum-well Bragg structures

Zhenshan Yang, J. E. Sipe, N. H. Kwong, R. Binder, and Arthur L. Smirl  »View Author Affiliations

JOSA B, Vol. 24, Issue 8, pp. 2013-2022 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (189 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop a strategy to reduce large reflection losses from quantum-well Bragg structures through an antireflection coating technique. It is based on generalized refractive indices, which we call “effective coupling indices” (ECIs), that can be introduced to describe the coupling of light into quantum-well Bragg structures. For the example of a spectrally narrow band, which is relevant for slow-light applications, we clarify the dependence of the ECIs on the spectral bandwidth and discuss the relation between the ECIs and the group-velocity index. Numerical simulations of reflection spectra demonstrate the effectiveness of the ECI concept.

© 2007 Optical Society of America

OCIS Codes
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

ToC Category:
Ultrafast Optics

Original Manuscript: October 30, 2006
Revised Manuscript: April 9, 2007
Manuscript Accepted: April 12, 2007
Published: July 19, 2007

Zhenshan Yang, J. E. Sipe, N. H. Kwong, R. Binder, and Arthur L. Smirl, "Antireflection coating for quantum-well Bragg structures," J. Opt. Soc. Am. B 24, 2013-2022 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).
  2. T. Stroucken, A. Knorr, P. Thomas, and S. W. Koch, "Coherent dynamics of radiatively coupled quantum-well excitons," Phys. Rev. B 53, 2026-2033 (1996). [CrossRef]
  3. M. Hübner, J. Kuhl, T. Stroucken, A. Knorr, S. W. Koch, R. Hey, and K. Ploog, "Collective effects of excitons in multiple quantum well Bragg and anti-Bragg structures," Phys. Rev. Lett. 76, 4199-4202 (1996). [CrossRef] [PubMed]
  4. J. P. Prineas, C. Ell, E. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch, "Exciton polariton eigenmodes in light-coupled InGaAs/GaAs semiconductor multiple-quantum-well periodic structures," Phys. Rev. B 61, 13863-13872 (2000). [CrossRef]
  5. L. I. Deych and A. A. Lisyansky, "Polariton dispersion law in periodic-Bragg and near-Bragg multiple quantum well structures," Phys. Rev. B 62, 4242-4244 (2000). [CrossRef]
  6. T. Ikawa and K. Cho, "Fate of superradiant mode in a resonant Bragg reflector," Phys. Rev. B 66, 085338 (2002). [CrossRef]
  7. Z. S. Yang, N. H. Kwong, R. Binder, and A. L. Smirl, "Stopping, storing and releasing light in quantum well Bragg structures," J. Opt. Soc. Am. B 22, 2144-2156 (2005). [CrossRef]
  8. Z. S. Yang, N. H. Kwong, R. Binder, and A. L. Smirl, "Distortionless light pulse delay in quantum-well Bragg structures," Opt. Lett. 30, 2790-2792 (2005). [CrossRef] [PubMed]
  9. A. Andre and M. Lukin, "Manipulating light pulses via dynamically controlled photonic band gap," Phys. Rev. Lett. 89, 143602 (2002). [CrossRef] [PubMed]
  10. M. F. Yanik and S. Fan, "Stopping light all optically," Phys. Rev. Lett. 92, 083901 (2004). [CrossRef] [PubMed]
  11. T. Baba and D. Ohsaki, "Interface of photonic crystals for high efficiently light transmission," Jpn. J. Appl. Phys. 40, 5920-5920 (2001). [CrossRef]
  12. J. Witzens, M. Hochberg, T. Baehr-Jones, and A. Scherer, "Mode matching interface for efficient coupling of light into planar photonic crystals," Phys. Rev. E 69, 046609 (2004). [CrossRef]
  13. B. Momeni and A. Adibi, "Adiabatic matching stage for coupling of light to extended Bloch modes of photonic crystals," Appl. Phys. Lett. 87, 171104 (2005). [CrossRef]
  14. Note that in it is called "effective refractive index."
  15. M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).
  16. O. S. Heavens, Optical Properties of Thin Solid Films (Dover, 1955).
  17. E. D. Palik, Handbook of Optical Constants in Solids (Academic, 1985).
  18. Note that the last sentence of Appendix in contains an ambiguous formulation. In the IB, there exists a close relation between neff and the group velocity index, not the phase index as could be understood from that sentence.
  19. L. C. Andreani, "Exciton-polaritons in superlattices," Phys. Lett. A 192, 99-109 (1994). [CrossRef]
  20. D. Citrin, "Material and optical approaches to exciton polaritons in multiple quantum wells: formal results," Phys. Rev. B 50, 5497-5505 (1994). [CrossRef]
  21. I. H. Deutsch, R. J. C. Spreeuw, S. L. Rolston, and W. D. Phillips, "Photonic band gaps in optical lattices," Phys. Rev. A 52, 1394-1410 (1995). [CrossRef] [PubMed]
  22. G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, "Nonlinear optics of normal-mode coupling semiconductor microcavities," Rev. Mod. Phys. 71, 1591-1639 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited