OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 9 — Sep. 1, 2007
  • pp: 2178–2184

Radial Bragg lasers: optimal design for minimal threshold levels and enhanced mode discrimination

Jacob Scheuer  »View Author Affiliations


JOSA B, Vol. 24, Issue 9, pp. 2178-2184 (2007)
http://dx.doi.org/10.1364/JOSAB.24.002178


View Full Text Article

Enhanced HTML    Acrobat PDF (476 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Radial Bragg distributed-feedback (DFB) lasers are designed and studied using the transfer matrix method, allowing an accurate analysis beyond the coupled-mode equations approach (small perturbations). Compared with conventional circular grating DFB lasers, incorporating periodic gratings, lower threshold levels, and enhanced mode discrimination are achieved by employing an optimal design strategy for the radial Bragg reflector.

© 2007 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.1480) Optical devices : Bragg reflectors
(250.3140) Optoelectronics : Integrated optoelectronic circuits

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 2, 2007
Manuscript Accepted: May 7, 2007
Published: August 8, 2007

Citation
Jacob Scheuer, "Radial Bragg lasers: optimal design for minimal threshold levels and enhanced mode discrimination," J. Opt. Soc. Am. B 24, 2178-2184 (2007)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-24-9-2178


Sort:  Year  |  Journal  |  Reset  

References

  1. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, 1999).
  2. B. E. Little, "Second-order filtering and sensing with partially coupled traveling waves in a single resonator," Opt. Lett. 23, 1570-1572 (1998). [CrossRef]
  3. C. Y. Chao and L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett. 83, 1527-1529 (2003). [CrossRef]
  4. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999). [CrossRef] [PubMed]
  5. T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, and A. Scherer, "Planar photonic crystal nanolasers (II): low-threshold quantum dot lasers," IEICE Trans. Electron. E87-C, 300-307 (2004).
  6. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944-947 (2003). [CrossRef]
  7. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Y. Ryu, "Waveguides, resonators and their coupled elements in photonic crystal slabs," Opt. Express 12, 1551-1561 (2004). [CrossRef] [PubMed]
  8. M. Loncar, M. Hochberg, and A. Scherer, "High quality factors and room-temperature lasing in a modified single-defect photonic crystal cavity," Opt. Lett. 29, 721-723 (2004). [CrossRef] [PubMed]
  9. H. Altug and J. Vuckovic, "Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays," Appl. Phys. Lett. 86, 111102 (2005). [CrossRef]
  10. K. Nozaki, T. Ide, J. Hashimoto, T. Baba, and W.-H. Zheng, "Photonic crystal point-shift nanolaser with ultimate small modal volume," Electron. Lett. 41, 843-845 (2005). [CrossRef]
  11. J. Scheuer, W. M. J. Green, G. DeRose, and A. Yariv, "Lasing from a circular Bragg nanocavity with an ultra-small modal volume," Appl. Phys. Lett. 86, 251101 (2005). [CrossRef]
  12. Y. Fink, J. N. Winn, F. Shanhui, C. Chiping, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998). [CrossRef] [PubMed]
  13. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, "Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers," Opt. Express 9, 748-779 (2001). [CrossRef] [PubMed]
  14. J. Scheuer and A. Yariv, "Coupled-waves approach to the design and analysis of Bragg and photonic crystal annular resonators," IEEE J. Quantum Electron. 39, 1555-1562 (2003). [CrossRef]
  15. J. Scheuer and A. Yariv, "Annular Bragg defect mode resonators," J. Opt. Soc. Am. B 20, 2285-2291 (2003). [CrossRef]
  16. J. Scheuer, W. M. J. Green, G. DeRose, and A. Yariv, "Low-threshold two-dimensional annular Bragg lasers," Opt. Lett. 29, 2641-2643 (2004). [CrossRef] [PubMed]
  17. J. Scheuer and A. Yariv, "Circular photonic crystal resonators," Phys. Rev. E 70, 036603 (2004). [CrossRef]
  18. J. Scheuer, W. M. J. Green, G. DeRose, and A. Yariv, "InGaAsP annular Bragg lasers: theory, applications and modal properties," IEEE J. Sel. Top. Quantum Electron. 11, 476-484 (2005). [CrossRef]
  19. T. Erdogan and D. G. Hall, "Circularly symmetric distributed feedback semiconductor laser: an analysis," J. Appl. Phys. 68, 1435-1444 (1990). [CrossRef]
  20. T. Erdogan and D. G. Hall, "Circularly symmetric distributed feedback laser: coupled mode treatment of TE vector fields," IEEE J. Quantum Electron. 28, 612-623 (1992). [CrossRef]
  21. X. M. Gong, A. K. Chan, and H. F. Taylor, "Lateral mode discrimination in surface emitting DBR lasers with cylindrical symmetry," IEEE J. Quantum Electron. 30, 1212-1218 (1994). [CrossRef]
  22. T. Makino and C. Wu, "Circular grating DFB and DBR semiconductor lasers: threshold current analysis," Opt. Commun. 90, 297-300 (1992). [CrossRef]
  23. C. Wu, T. Makino, S. I. Najafi, R. Maciejko, M. Svilans, J. Glinski, and M. Fallahi, "Threshold gain and threshold current analysis of circular grating DFB and DBR lasers," IEEE J. Quantum Electron. 29, 2596-2606 (1993). [CrossRef]
  24. K. J. Kasunic and M. Fallahi, "Gain saturation in circular-grating distributed-feedback semiconductor lasers," J. Opt. Soc. Am. B 14, 2147-2152 (1997). [CrossRef]
  25. P. L. Greene and D. G. Hall, "Effects of radiation on circular-grating DFB lasers. Part I. Coupled-mode equations," IEEE J. Quantum Electron. 37, 353-364 (2001). [CrossRef]
  26. C. Wu, M. Svilans, M. Fallahi, T. Makino, J. Glinski, C. Maritan and C. Blaauw, "Optically pumped surface-emitting DFB GaInAsP/InP lasers with circular grating," Electron. Lett. 27, 1819-1820 (1991). [CrossRef]
  27. C. Wu, T. Makino, R. Maciejko, S. I. Najafi, and M. Svilans, "Simplified coupled-wave equations for cylindrical waves in circular grating planar waveguides," J. Lightwave Technol. 10, 1575-1589 (1992). [CrossRef]
  28. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford Press, 1997).
  29. P. Yeh, A. Yariv, and E. Marom, "Theory of Bragg fiber," J. Opt. Soc. Am. 68, 1196-1201 (1978). [CrossRef]
  30. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).
  31. G. N. Watson, Theory of Bessel Functions, 2nd ed. (Cambridge U. Press, 1952).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited