OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 9 — Sep. 1, 2007
  • pp: 2208–2212

Compensation of the influence of loss for a spatial soliton in a dissipative modulated Bessel optical lattice

Hui Zhuo, Xiquan Fu, Yonghua Hu, and Shuangchun Wen  »View Author Affiliations


JOSA B, Vol. 24, Issue 9, pp. 2208-2212 (2007)
http://dx.doi.org/10.1364/JOSAB.24.002208


View Full Text Article

Enhanced HTML    Acrobat PDF (305 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Propagation of a spatial soliton in a dissipative modulated Bessel optical lattice is investigated, both analytically and numerically. The dynamic evolution equations for beam width, amplitude, and curvature wavefront are obtained by a variational approach. It is shown that by properly increasing the modulation depth of refractive index of the optical lattice, the loss effect can be compensated exactly to fulfill a stable spatial soliton propagation.

© 2007 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

ToC Category:
Nonlinear Optics

History
Original Manuscript: December 11, 2006
Revised Manuscript: April 25, 2007
Manuscript Accepted: April 26, 2007
Published: August 14, 2007

Citation
Hui Zhuo, Xiquan Fu, Yonghua Hu, and Shuangchun Wen, "Compensation of the influence of loss for a spatial soliton in a dissipative modulated Bessel optical lattice," J. Opt. Soc. Am. B 24, 2208-2212 (2007)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-24-9-2208


Sort:  Year  |  Journal  |  Reset  

References

  1. A. S. Davydov, "The theory contraction of proteins under their excitation," J. Theor. Biol. 38, 559-569 (1973). [CrossRef] [PubMed]
  2. W. P. Su, J. R. Schieffer, and A. J. Heeger, "Solitons in polyacetylene," Phys. Rev. Lett. 42, 1698-1701 (1979). [CrossRef]
  3. D. N. Christodes and R. I. Joseph, "Discrete self-focusing in nonlinear arrays of coupled waveguides," Opt. Lett. 13, 794-796 (1988). [CrossRef]
  4. A. Trombettoni and A. Smerzi, "Discrete solitons and breathers with dilute Bose-Einstin condensates," Phys. Rev. Lett. 86, 2353-2356 (2001). [CrossRef] [PubMed]
  5. P. Pedri, L. Santos, P. Öhberg, and S. Stringari, "Violation of self-similarity in the expansion of a one-dimensional Bose gas," Phys. Rev. A 68, 043601 (2003). [CrossRef]
  6. J.-P. Martikainen and H. T. C. Stoof, "Excitations of a Bose-Einstein condensate in a one-dimensional optical lattice," Phys. Rev. A 68, 013610 (2003). [CrossRef]
  7. R. Scharf and A. R. Bishop, "Length-scale competition for the one-dimensional nonlinear Schrödinger equation with spatially periodic potentials," Phys. Rev. E 47, 1375-1383 (1993). [CrossRef]
  8. D. Mihalache, D. Mazilu, F. Lederer, B. A. Malomed, Y. V. Kartashov, L.-C. Crasovan, and L. Torner, "Stable spatiotemporal solitons in Bessel optical lattices," Phys. Rev. Lett. 95, 023902 (2005). [CrossRef] [PubMed]
  9. N. K. Efremidis and D. N. Christodoulides, "Lattice solitons in Bose-Einstein condensates," Phys. Rev. A 67, 063608 (2003). [CrossRef]
  10. M. B. Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon, "Bloch oscillations of atoms in an optical potential," Phys. Rev. Lett. 76, 4508-4511 (1996). [CrossRef] [PubMed]
  11. B. P. Anderson and M. A. Kasevich, "Macroscopic quantum interference from atomic tunnel arrays," Science 282, 1686-1689 (1998). [CrossRef] [PubMed]
  12. H. Buljan, O. Cohen, J. W. Fleischer, T. Schwartz, M. Segev, Z. H. Musslimani, N. K. Efremidis, and D. N. Christodoulides, "Random-phase solitons in nonlinear periodic lattices," Phys. Rev. Lett. 92, 223901 (2004). [CrossRef] [PubMed]
  13. L. Pricoupenko, "Variational approach for the two-dimensional trapped Bose-Einstein condensate," Phys. Rev. A 70, 013601 (2004). [CrossRef]
  14. D. E. Pelinovsky, A. A. Sukhorukov, and Y. S. Kivshar, "Bifurcations and stability of gap solitons in periodic potentials," Phys. Rev. E 70, 036618 (2004). [CrossRef]
  15. D. N. Christodoulides, F. Lederer, and Y. Silberberg, "Discretizing light behaviour in linear and nonlinear waveguide lattices," Nature 424, 817-823 (2003). [CrossRef] [PubMed]
  16. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, "Soliton control in chirped photonic lattices," J. Opt. Soc. Am. B 22, 1356-1359 (2005). [CrossRef]
  17. Y. V. Kartashov, A. S. Zelenina, L. Torner, and V. A. Vysloukh, "Spatial soliton switching in quasi-continuous optical arrays," Opt. Lett. 29, 766-768 (2004). [CrossRef] [PubMed]
  18. Z. Xu, Y. V. Kartashov, and L. Torner, "Soliton mobility in nonlocal optical lattices," Phys. Rev. Lett. 95, 113901 (2005). [CrossRef] [PubMed]
  19. V. M. Pérez-García, V. V. Konotop, and J. J. García-Ripoll, "Dynamics of quasicollapse in nonlinear Schrödinger systems with nonlocal interactions," Phys. Rev. E 62, 4300-4308 (2000). [CrossRef]
  20. K. Tajima, "Compensation of soliton broadening in nonlinear optical fibers with loss," Opt. Lett. 12, 54-56 (1987). [CrossRef] [PubMed]
  21. H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, "Diffraction management," Phys. Rev. Lett. 85, 1863-1866 (2000). [CrossRef] [PubMed]
  22. T. Pertsch, T. Zentgraf, U. Peschel, A. Bräer, and F. Lederer, "Anomalous refraction and diffraction in discrete optical systems," Phys. Rev. Lett. 88, 093901 (2002). [CrossRef] [PubMed]
  23. D. Anderson, "Variational approach to nonlinear pulse propagation in optical fibers," Phys. Rev. A 27, 3135-3145 (1983). [CrossRef]
  24. C. P. Jisha, V. C. Kuriakose, and K. Porsezian, "Variational approach to spatial optical solitons in bulk cubic-quintic media stabilized by self-induced multiphoton ionization," Phys. Rev. E 71, 056615 (2005). [CrossRef]
  25. D. P. Caetano, S. B. Cavalcanti, J. M. Hickmann, A. M. Kamchatnov, R. A. Kraenkel, and E. A. Makarova, "Soliton propagation in a medium with Kerr nonlinearity and resonant impurities: a variational approach," Phys. Rev. E 67, 046615 (2003). [CrossRef]
  26. D. Anderson and M. Bonnedal, "Variational approach to nonlinear self-focusing of Gaussian laser beams," Phys. Fluids 22, 105-109 (1979). [CrossRef]
  27. D. Anderson, M. Bonnedal, and M. Lisak, "Self-trapped cylindrical laser beams," Phys. Fluids 22, 1838-1840 (1979). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited