OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 9 — Sep. 1, 2007
  • pp: 2268–2272

Numerical optimization of a grating coupler for the efficient excitation of surface plasmons at an Ag SiO 2 interface

Jesse Lu, Csaba Petre, Eli Yablonovitch, and Josh Conway  »View Author Affiliations


JOSA B, Vol. 24, Issue 9, pp. 2268-2272 (2007)
http://dx.doi.org/10.1364/JOSAB.24.002268


View Full Text Article

Enhanced HTML    Acrobat PDF (388 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The efficient generation of surface plasmons from free-space optical waves is still an open problem in the field. Here we present a methodology and optimized design for a grating coupler. The photoexcitation of surface plasmons at an Ag SiO 2 interface is numerically demonstrated to yield a 50% coupling efficiency from a Gaussian beam into surface plasmon voltages and currents.

© 2007 Optical Society of America

OCIS Codes
(050.1590) Diffraction and gratings : Chirping
(050.2770) Diffraction and gratings : Gratings
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Diffraction and Gratings

History
Original Manuscript: March 5, 2007
Revised Manuscript: May 15, 2007
Manuscript Accepted: June 13, 2007
Published: August 20, 2007

Citation
Jesse Lu, Csaba Petre, Eli Yablonovitch, and Josh Conway, "Numerical optimization of a grating coupler for the efficient excitation of surface plasmons at an Ag-SiO2 interface," J. Opt. Soc. Am. B 24, 2268-2272 (2007)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-24-9-2268


Sort:  Year  |  Journal  |  Reset  

References

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. J. Conway, "Efficient optical coupling to the nanoscale," Ph.D. dissertation (University of California, Los Angeles, 2006).
  3. J. Holoma "Present and future of surface plasmon resonance biosensors," Anal. Bioanal. Chem. 377, 528-539 (2003). [CrossRef]
  4. S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102-1106 (1997). [CrossRef] [PubMed]
  5. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997). [CrossRef]
  6. K. H. Su, S. Durant, J. M. Steele, Y. Xiong, C. Sun, and X. Zhang, "Raman enhancement factor of a single tunable nanoplasmonic resonator," J. Phys. Chem. B 110, 3964-3968 (2006). [CrossRef] [PubMed]
  7. W. A. Challener, T. W. Mcdaniel, C. D. Mihalcea, K. R. Mountfield, K. Pelhos, and I. K. Sendur, "Light delivery techniques for heat-assisted magnetic recording," Jpn. J. Appl. Phys., Part 1 42, 981-988 (2003). [CrossRef]
  8. X. Luo and T. Ishihara, "Surface plasmon resonant interference nanolithography technique," Appl. Phys. Lett. 84, 4780-4782 (2004). [CrossRef]
  9. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006). [CrossRef] [PubMed]
  10. G. I. Stegeman, R. F. Wallis, and A. A. Maradudin, "Excitation of surface polaritons by end-fire coupling," Opt. Lett. 8, 386-388 (1983). [CrossRef] [PubMed]
  11. R. Charbonneau and N. Lahoud, "Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons," Opt. Express 13, 977-984 (2005). [CrossRef] [PubMed]
  12. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120 (2006). [CrossRef]
  13. D. P. Siu and T. K. Gustafson, "Coherent coupling of radiation to metal-barrier-metal structures by surface plasmons," Appl. Phys. Lett. 31, 71-73 (1977). [CrossRef]
  14. W. L. Stutzman and G. A. Thiele, Antenna Theory and Design (Wiley, 1998), p. 187.
  15. C. Peng and W. A. Challener, "Input-grating couplers for narrow Gaussian beam: influence of groove depth," Opt. Express 12, 6481-6490 (2004). [CrossRef] [PubMed]
  16. G. Leveque and O. J. F. Martin, "Numerical study and optimization of a diffraction grating for surface plasmon excitation," Proc. SPIE 5927, 592713 (2005). [CrossRef]
  17. R. M. Lewis, V. Torczon, and M. W. Trosset, "Direct search methods: then and now," J. Comput. Appl. Math. 124, 191-207 (2000). [CrossRef]
  18. A. Narasimha, "Low dispersion, high spectral efficiency, RF photonic transmission systems and low loss grating couplers for silicon-on-insulator nanophotonic integrated circuits," Ph.D. dissertation (University of California, Los Angeles, 2004), pp. 70-71.
  19. J. Helszajn, Microwave Engineering: Passive, Active and Non-Reciprocal Circuits (McGraw-Hill, 1992), pp. 17-18.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited