OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 9 — Sep. 1, 2007
  • pp: 2294–2306

Detection of nitric oxide at low ppb m concentrations by differential absorption spectrometry using a fully diode-laser-based ultraviolet laser system

Jie Shao, Lemthong Lathdavong, Phaythoune Thavixay, and Ove Axner  »View Author Affiliations


JOSA B, Vol. 24, Issue 9, pp. 2294-2306 (2007)
http://dx.doi.org/10.1364/JOSAB.24.002294


View Full Text Article

Enhanced HTML    Acrobat PDF (317 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An instrumentation for detection of nitric oxide ( NO ) by direct absorption spectrometry in the parts in 10 9 (ppb) range on its electronic X 2 Π ( ν = 0 ) A 2 Σ + ( ν = 0 ) transition has been constructed around a commercially available fully diode-laser-based laser system producing milliwatts powers of ultraviolet light at 226.6 nm , and its analytical performance has been evaluated. It is shown that the system is capable of detecting NO down to 3 ppb m under low-pressure conditions (at a signal-to-noise ratio of 3 for a signal averaging of 5 s ), which is 2 orders of magnitude below that of any other diode-laser-based absorption technique. The combined line strength of the targeted lines was assessed to 3.1 × 10 18 cm 1 ( molecule cm 2 ) , which supersedes typical line strengths of the fundamental vibrational band and the first and second overtone bands of NO by 2 , 4 , and 5 orders of magnitude, respectively. Also the collision broadening and shift of the targeted lines in NO by N 2 have been assessed.

© 2007 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.3610) Lasers and laser optics : Lasers, ultraviolet
(300.1030) Spectroscopy : Absorption
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6540) Spectroscopy : Spectroscopy, ultraviolet

ToC Category:
Spectroscopy

History
Original Manuscript: February 26, 2007
Revised Manuscript: May 28, 2007
Manuscript Accepted: May 29, 2007
Published: August 21, 2007

Citation
Jie Shao, Lemthong Lathdavong, Phaythoune Thavixay, and Ove Axner, "Detection of nitric oxide at low ppb∙m concentrations by differential absorption spectrometry using a fully diode-laser-based ultraviolet laser system," J. Opt. Soc. Am. B 24, 2294-2306 (2007)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-24-9-2294


Sort:  Year  |  Journal  |  Reset  

References

  1. U.S. Environmental Protection Agency, "National air quality and emission trends report, 1998," EPA 454/R-01-004 (U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, 2001).
  2. M. Radojevic, "Reduction of nitrogen oxides in flue gases," Environ. Pollut. 102, 685-689 (1998). [CrossRef]
  3. R. K. Lyon, "Thermal DeNOx," Environ. Sci. Technol. 21, 231-236 (1987). [CrossRef] [PubMed]
  4. T. J. Feeley, A. E. Mayne, and S. I. Plasynski, "The US Department of Energy's NOx control technology R&D program for existing power plants," Int. J. Environ. Pollut. 17, 66-81 (2002).
  5. L. J. Muzio, G. C. Quartucy, and J. E. Cichanowicz, "Overview and status of post-combustion NOx control: SNCR, SCR, and hybrid technologies," Int. J. Environ. Pollut. 17, 4-30 (2002).
  6. S. Zandaryaa, R. Gavasci, F. Lombardi, and A. Fiore, "Nitrogen oxides from waste incineration: control by selective non-catalytic reduction," Chemosphere 42, 491-497 (2001). [CrossRef] [PubMed]
  7. M. G. Allen, "Diode laser absorption sensors for gas-dynamic and combustion flows," Meas. Sci. Technol. 9, 545-562 (1998). [CrossRef]
  8. P. Werle, "A review of recent advances in semiconductor laser based gas monitors," Spectrochim. Acta, Part A 54, 197-236 (1998). [CrossRef]
  9. P. Werle, "Spectroscopic trace gas analysis using semiconductor diode lasers," Spectrochim. Acta, Part A 52, 805-822 (1996). [CrossRef]
  10. P. Werle, "Tunable diode laser absorption spectroscopy: recent findings and novel approaches," Infrared Phys. Technol. 37, 59-66 (1996). [CrossRef]
  11. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, "Near- and mid-infrared laser-optical sensors for gas analysis," Opt. Lasers Eng. 37, 101-114 (2002). [CrossRef]
  12. P. Kluczynski, J. Gustafsson, Å. M. Lindberg, and O. Axner, "Wavelength modulation absorption spectrometry--an extensive scrutiny of the generation of signals," Spectrochim. Acta, Part B 56, 1277-1354 (2001). [CrossRef]
  13. G. Gagliardi and L. Gianfrani, "Trace-gas analysis using diode lasers in the near-IR and long-path techniques," Opt. Lasers Eng. 37, 509-520 (2002). [CrossRef]
  14. P. A. Martin, "Near-infrared diode laser spectroscopy in chemical process and environmental air monitoring," Chem. Soc. Rev. 31, 201-210 (2002). [CrossRef] [PubMed]
  15. P. Werle, K. Maurer, R. Kormann, R. Mucke, F. D'Amato, T. Lancia, and A. Popov, "Spectroscopic gas analyzers based on indium-phosphide antimonide, and lead-salt diode-lasers," Spectrochim. Acta, Part A 58, 2361-2372 (2002). [CrossRef]
  16. A. G. Berezin, O. V. Ershov, and A. I. Nadezhdinskii, "Trace complex-molecule detection using near-IR diode lasers," Appl. Phys. B 75, 203-214 (2002). [CrossRef]
  17. R. Claps, F. V. Englich, D. Leleux, D. Richter, F. K. Tittel, and R. F. Curl, "Ammonia detection using near-infrared diode laser based overtone spectrocopy," Appl. Opt. 40, 4376-4386 (2001). [CrossRef]
  18. G. Whitenett, G. Stewart, H. B. Yu, and B. N. Culshaw, "Investigation of a tuneable mode-locked fiber laser for application to multipoint gas spectroscopy," J. Lightwave Technol. 22, 813-819 (2004). [CrossRef]
  19. K. C. Clemitshaw, "A review of instrumentation and measurement techniques for ground-based and airborne field studies of gas-phase tropospheric chemistry," Critical Rev. Environ. Sci. Technol. 34, 1-108 (2004). [CrossRef]
  20. F. K. Tittel, D. Richter, and A. Fried, "Mid-infrared laser applications in spectroscopy," in Solid-State Mid-Infrared Laser Sources, I.T.Sorokina and K.L.Vodopyanov, eds. (Springer, 2003), pp. 445-510.
  21. A. Sasso, G. Pesce, and G. Rusciano, "High-resolution and high-sensitivity laser spectroscopy of atoms and molecules in the near- and mid-IR spectral regions," Phys. Scr. T105, 76-84 (2003). [CrossRef]
  22. J. Shao, W. J. Zhang, X. M. Gao, L. X. Ning, and Y. Q. Yuan, "Absorption measurements for highly sensitive diode laser of CO2 near 1.3μm at room temperature," Chin. Phys. 14, 482-486 (2005). [CrossRef]
  23. D. M. Sonnenfroh and M. G. Allen, "Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8-μm room-temperature diode laser," Appl. Opt. 36, 7970-7977 (1997). [CrossRef]
  24. R. M. Mihalcea, D. S. Baer, and R. K. Hanson, "A diode-laser absorption sensor system for combustion emission measurements," Meas. Sci. Technol. 9, 327-338 (1998). [CrossRef]
  25. D. B. Oh and A. C. Stanton, "Measurement of nitric oxide with an antimonide diode laser," Appl. Opt. 36, 3294-3297 (1997). [CrossRef] [PubMed]
  26. M. Snels, C. Corsi, F. D'Amato, M. De Rosa, and G. Modugno, "Pressure broadening in the second overtone of NO, measured with a near infrared DFB diode laser," Opt. Commun. 159, 80-83 (1999). [CrossRef]
  27. D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. L. Jimenez, "A tunable diode laser system for the remote sensing of on-road vehicle emissions," Appl. Phys. B 67, 433-441 (1998). [CrossRef]
  28. J. L. Jimenez, M. D. Koplow, D. D. Nelson, M. S. Zahniser, and S. E. Schmidt, "Characterization of on-road vehicle NO emissions by a TILDAS remote sensor," J. Air Waste Manage. Assoc. 49, 463-470 (1999).
  29. J. L. Jimenez, G. J. McRae, D. D. Nelson, M. S. Zahniser, and C. E. Kolb, "Remote sensing of NO and NO2 emissions from heavy-duty diesel trucks using tunable diode lasers," Environ. Sci. Technol. 34, 2380-2387 (2000). [CrossRef]
  30. C. Roller, K. Namjou, J. D. Jeffers, M. Camp, A. Mock, P. J. McCann, and J. Grego, "Nitric oxide breath testing by tunable-diode laser absorption spectroscopy: application in monitoring respiratory inflammation," Appl. Opt. 41, 6018-6029 (2002). [CrossRef] [PubMed]
  31. P. K. Falcone, R. K. Hansson, and C. H. Kruger, "Tunable diode laser absorption measurements of nitric oxide in combustion gases," Combust. Sci. Technol. 35, 81-99 (1983). [CrossRef]
  32. D. M. Sonnenfroh, W. T. Rawlins, M. G. Allen, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, "Application of balanced detection to absorption measurements of trace gases with room-temperature quasi-cw quantum-cascade lasers," Appl. Opt. 40, 812-820 (2001). [CrossRef]
  33. D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, "Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer," Appl. Phys. B 75, 343-350 (2002). [CrossRef]
  34. S. C. Herndon, J. H. Shorter, M. S. Zahniser, D. D. Nelson, J. Jayne, R. C. Brown, R. C. Miake-Lye, I. Waitz, P. Silva, T. Lanni, K. Demerjian, and C. E. Kolb, "NO and NO2 emission ratios measured from in-use commercial aircraft during taxi and takeoff," Environ. Sci. Technol. 38, 6078-6084 (2004). [CrossRef] [PubMed]
  35. Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, "Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection," Appl. Opt. 43, 2257-2266 (2004). [CrossRef] [PubMed]
  36. In addition, QC lasers have not proved to be problem-free to utilize for spectroscopic applications. They have a few drawbacks that need to be circumvented before their full potential can be used. One is that they require exceptionally large driving currents from several hundreds milliamperes to several amperes. This makes cw operation so far difficult. This implies also that they have a significant "chirping" of the wavelength during a pulse, which can complicate spectroscopic investigations.
  37. B. A. Paldus and A. A. Kachanov, "An historical overview of cavity-enhanced methods," Can. J. Phys. 83, 975-999 (2005). [CrossRef]
  38. Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, "Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy," Appl. Phys. B 82, 149-154 (2006). [CrossRef]
  39. M. R. McCurdy, Y. A. Bakhirkin, and F. K. Tittel, "Quantum cascade laser-based integrated cavity output spectroscopy of exhaled nitric oxide," Appl. Phys. B 85, 445-452 (2006). [CrossRef]
  40. H. R. Barry, B. Bakowski, L. Corner, T. Freegarde, O. T. W. Hawkins, G. Hancock, R. M. J. Jacobs, R. Peverall, and G. A. D. Ritchie, "OH detection by absorption of frequency-doubled diode laser radiation at 308nm," Chem. Phys. Lett. 319, 125-130 (2000). [CrossRef]
  41. G. J. Ray, T. N. Anderson, J. A. Caton, R. P. Lucht, and T. Walther, "OH sensor based on ultraviolet, continuous-wave absorption spectroscopy utilizing a frequency-quadrupled, fiber-amplified external-cavity diode laser," Opt. Lett. 26, 1870-1872 (2001). [CrossRef]
  42. L. Corner, J. S. Gibb, G. Hancock, A. Hutchinson, V. L. Kasyutich, R. Peverall, and G. A. D. Ritchie, "Sum frequency generation at 309nm using a violet and a near-IR DFB diode laser for detection of OH," Appl. Phys. B 74, 441-444 (2002). [CrossRef]
  43. D. B. Oh, "Diode-laser-based sum-frequency generation of tunable wavelength-modulated UV-light for OH radical detection," Opt. Lett. 20, 100-102 (1995). [CrossRef] [PubMed]
  44. T. N. Anderson, R. P. Lucht, T. R. Meyer, S. Roy, and J. R. Gord, "Diode-laser-based ultraviolet-absorption sensor for high-speed detection of the hydroxyl-radical," Opt. Lett. 30, 1321-1323 (2005). [CrossRef] [PubMed]
  45. T. R. Meyer, S. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, "Measurements of OH mole fraction and temperature up to 20kHz by using a diode-laser-based UV absorption sensor," Appl. Opt. 44, 6729-6740 (2005). [CrossRef] [PubMed]
  46. K. A. Peterson and D. B. Oh, "High-sensitivity detection of CH radicals in flames by use of a diode-laser-based near-ultraviolet light source," Opt. Lett. 24, 667-669 (1999). [CrossRef]
  47. G. Hancock, V. L. Kasyutich, and G. A. D. Ritchie, "Wavelength-modulation spectroscopy using a frequency-doubled current-modulated diode laser," Appl. Phys. B 74, 569-575 (2002). [CrossRef]
  48. G. Hancock, V. L. Kasyutich, and G. A. D. Ritchie, "Single-tone frequency-modulation spectroscopy with frequency-doubled current-modulated diode laser light," Opt. Lett. 27, 763-765 (2002). [CrossRef]
  49. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, "Development of a narrow-band, tunable, frequency-quadrupled diode laser for UV absorption spectroscopy," Appl. Opt. 37, 3954-3960 (1998). [CrossRef]
  50. J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, "Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254nm," Appl. Phys. Lett. 76, 1234-1236 (2000). [CrossRef]
  51. W. G. Mallard, J. H. Miller, and K. C. Smyth, "Resonantly enhanced two-photon photoionization of NO in an atmospheric flame," J. Chem. Phys. 76, 3483-3492 (1982). [CrossRef]
  52. A. Y. Chang, M. D. Dirosa, and R. K. Hanson, "Temperature dependence of collision broadening and shift in the NO A-X (0,0) band in the presence of argon and nitrogen," J. Quant. Spectrosc. Radiat. Transf. 47, 375-390 (1992). [CrossRef]
  53. S. F. Hanna, R. Barron-Jimenez, T. N. Anderson, R. P. Lucht, J. A. Caton, and T. Walther, "Diode-laser-based ultraviolet absorption sensor for nitric oxide," Appl. Phys. B 75, 113-117 (2002). [CrossRef]
  54. T. N. Anderson, R. P. Lucht, R. Barron-Jimenez, S. F. Hanna, J. A. Caton, T. Walther, S. Roy, M. S. Brown, J. R. Gord, I. Critchley, and L. Flamand, "Combustion exhaust measurements of nitric oxide with an ultraviolet diode-laser-based absorption sensor," Appl. Opt. 44, 1491-1502 (2005). [CrossRef] [PubMed]
  55. M. Simeckova, D. Jacquemart, L. S. Rothman, R. R. Gamache, and A. Goldman, "Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database," J. Quant. Spectrosc. Radiat. Transf. 98, 130-155 (2006). [CrossRef]
  56. L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, "The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001," J. Quant. Spectrosc. Radiat. Transf. 82, 5-44 (2003). [CrossRef]
  57. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, "The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition," J. Quant. Spectrosc. Radiat. Transf. 60, 665-710 (1998). [CrossRef]
  58. L. G. Piper and L. M. Cowles, "Einstein coefficients and transition-moment variation for the NO(A2Σ+−X2Π) transition," J. Chem. Phys. 85, 2419-2422 (1986). [CrossRef]
  59. M.-S. Chou, A. M. Dean, and D. Stern, "Laser induced fluorescence and absorption measurements of NO in NH3/O2 and CH4/air flames," J. Chem. Phys. 78, 5962-5970 (1983). [CrossRef]
  60. J. R. Reisel, C. D. Carter, and N. M. Laurendeau, "Einstein coefficients for rotational lines of the (0,0) band of the NOA2Σ+−X2Π system," J. Quant. Spectrosc. Radiat. Transf. 47, 43-54 (1992). [CrossRef]
  61. R. Freedman and R. W. Nicholls, "Molecular constants for the ν″=0(X2Π) and ν′=0(A2Σ+) levels of the NO molecule and its isotopes," J. Mol. Spectrosc. 83, 223-227 (1980). [CrossRef]
  62. A. Timmermann and R. Wallenstein, "Doppler-free two-photon excitation of nitric oxide with frequency-stabilized cw dye laser radiation," Opt. Commun. 39, 239-242 (1981). [CrossRef]
  63. P. M. Danehy, E. J. Friedmanhill, R. P. Lucht, and R. L. Farrow, "The effects of collisional quenching on degenerate four-wave-mixing," Appl. Phys. B 57, 243-248 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited