OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 9 — Sep. 1, 2007
  • pp: 2500–2508

Time-domain method for characterizing retardation plates with high sensitivity and resolution

Shaun M. Wilson, Vinod Vats, and Patrick H. Vaccaro  »View Author Affiliations


JOSA B, Vol. 24, Issue 9, pp. 2500-2508 (2007)
http://dx.doi.org/10.1364/JOSAB.24.002500


View Full Text Article

Enhanced HTML    Acrobat PDF (854 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A time-domain technique for quantitatively measuring linear retardance with an unprecedented degree of accuracy is described both theoretically and experimentally. This novel approach builds upon the unique capabilities afforded by the pulsed ring-down paradigm, as augmented by the insertion of polarization-selective components into the light injection stage and signal detection train of a stable, high-finesse cavity that contains the optical component under investigation. Application to a quarter-waveplate of the compound zero-order design highlights the robust and versatile nature of the proposed scheme while simultaneously demonstrating the ability to resolve retardation imperfections with (one standard deviation) uncertainties of better than λ 10 6 .

© 2007 Optical Society of America

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(220.4840) Optical design and fabrication : Testing
(230.5440) Optical devices : Polarization-selective devices
(260.2130) Physical optics : Ellipsometry and polarimetry

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: June 8, 2007
Manuscript Accepted: July 13, 2007
Published: August 31, 2007

Citation
Shaun M. Wilson, Vinod Vats, and Patrick H. Vaccaro, "Time-domain method for characterizing retardation plates with high sensitivity and resolution," J. Opt. Soc. Am. B 24, 2500-2508 (2007)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-24-9-2500


Sort:  Year  |  Journal  |  Reset  

References

  1. F. A. Jenkins and H. E. White, Fundamental of Optics, 4th ed. (McGraw-Hill, 1976).
  2. E. Hecht, Optics, 4th ed. (Addison-Wesley, 2002).
  3. G. Horváth and D. Varjú, Polarized Light in Animal Vision: Polarization Patterns in Nature (Springer-Verlag, 2004).
  4. P. D. Naselsky, D. I. Novikov, and I. D. Novikov, The Physics of the Cosmic Microwave Background, Cambridge astrophysics series, Vol. 41 (Cambridge U. Press, 2006). [CrossRef]
  5. L. D. Barron, Molecular Light Scattering and Optical Activity, 2nd ed. (Cambridge U. Press, 2004). [CrossRef]
  6. N. Berova, K. Nakanishi, and R. W. Woody, Circular Dichroism: Principles and Applications (Wiley, 2000).
  7. E. L. Eliel, S. H. Wilen, and M. P. Doyle, Basic Organic Stereochemistry (Wiley, 2001).
  8. D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, 1990).
  9. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007).
  10. H. G. Tompkins and W. A. McGahan, Spectroscopic Ellipsometry and Reflectometry: A User's Guide (Wiley, 1999).
  11. P. D. Hale and G. W. Day, "Stability of birefringent linear retarders (waveplates)," Appl. Opt. 27, 5146-5153 (1988) [CrossRef] [PubMed]
  12. W.-Q. Zhang, "New phase shift formulas and stability of waveplate in oblique incident beam," Opt. Commun. 176, 9-15 (2000). [CrossRef]
  13. J. M. Beckers, "Achromatic linear retarders," Appl. Opt. 10, 973-975 (1971). [CrossRef] [PubMed]
  14. P. Hariharan, "Achromatic and apochromatic halfwave and quarterwave retarders," Opt. Eng. (Bellingham) 35, 3335-3337 (1996). [CrossRef]
  15. P. Hariharan, "Broad-band superachromatic retarders," Meas. Sci. Technol. 9, 1678-1681 (1998). [CrossRef]
  16. J. Schirmer and T. Schmidt-Kaler, "Liquid crystal phase retarder with broad spectral range," Opt. Commun. 176, 313-317 (2000). [CrossRef]
  17. P. Hariharan and P. E. Ciddor, "Superachromatic circular polarizer," Meas. Sci. Technol. 11, N117-N118 (2000). [CrossRef]
  18. A. V. Samoylov, V. S. Samoylov, A. P. Vidmachenko, and A. V. Perekhod, "Achromatic and super-achromatic zero-order waveplates," J. Quant. Spectrosc. Radiat. Transf. 88, 319-325 (2004). [CrossRef]
  19. S. Shen, J. She, and T. Tao, "Optimal design of achromatic true zero-order waveplates using twisted nematic liquid crystal," J. Opt. Soc. Am. A 22, 961-965 (2005). [CrossRef]
  20. E. A. West and M. H. Smith, "Polarization errors associated with birefringent waveplates," Opt. Eng. (Bellingham) 34, 1574-1580 (1995). [CrossRef]
  21. H. G. Jerrard, "Optical compensators for measurement of elliptical polarization," J. Opt. Soc. Am. 38, 35-59 (1948). [CrossRef]
  22. R. C. Plumb, "Analysis of elliptically polarized light," J. Opt. Soc. Am. 50, 892-894 (1960). [CrossRef]
  23. B. R. Grunstra and H. B. Perkins, "A method for the measurement of optical retardation angles near 90 degrees," Appl. Opt. 5, 585-588 (1966). [CrossRef] [PubMed]
  24. S. D. Chidester, J. W. Harvey, and R. P. Hubbard, "Measurement of crystal retarders," Appl. Opt. 30, 12-14 (1991). [CrossRef] [PubMed]
  25. D. H. Goldstein, "Mueller matrix dual-rotating retarder polarimeter," Appl. Opt. 31, 6676-6683 (1992). [CrossRef] [PubMed]
  26. D. B. Chenault and R. A. Chipman, "Measurements of linear diattenuation and linear retardance spectra with a rotating sample spectropolarimeter," Appl. Opt. 32, 3513-3519 (1993). [CrossRef] [PubMed]
  27. G. C. Nechev, "Analytical phase-measuring technique for retardation measurements," Appl. Opt. 33, 6621-6625 (1994). [CrossRef] [PubMed]
  28. P. A. Williams, A. H. Rose, and C. M. Wang, "Rotating-polarizer polarimeter for accurate retardation measurement," Appl. Opt. 36, 6466-6472 (1997). [CrossRef]
  29. J. P. Lesso, A. J. Duncan, W. Sibbett, and M. J. Padgett, "A technique for modeling the performance of birefringent waveplates," Opt. Quantum Electron. 31, 645-653 (1999). [CrossRef]
  30. Y. Lin, Z. Zhou, and R. Wang, "Optical heterodyne measurement of the phase retardation of a quarter-waveplate," Opt. Lett. 13, 553-555 (1988). [CrossRef]
  31. S. Nakadate, "High-precision retardation measurement using phase detection of Young's fringes," Appl. Opt. 29, 242-246 (1990). [CrossRef] [PubMed]
  32. S. De Nicola, G. Carbonara, A. Finizio, and G. Pierattini, "Heterodyne interferometric measurement of the temperature coefficient of birefringence of quartz retardation plates," Proc. SPIE 2097, 158-162 (1993). [CrossRef]
  33. C. Chou, Y.-C. Huang, and M. Chang, "Polarized common path optical heterodyne interferometer for measuring the elliptical birefringence of a quartz waveplate," Jpn. J. Appl. Phys., Part 1 35, 5526-5529 (1996). [CrossRef]
  34. M. H. Chiu, C. D. Chen, and D.-C. Su, "Method for determining the fast axis and phase retardation of a waveplate," J. Opt. Soc. Am. A 13, 1924-1929 (1996). [CrossRef]
  35. C. Chou, Y.-C. Haung, and M. Chang, "Effect of elliptical birefringence on the measurement of the phase retardation of a quartz waveplate by an optical heterodyne polarimeter," J. Opt. Soc. Am. A 14, 1367-1372 (1997). [CrossRef]
  36. K. B. Rochford and C. M. Wang, "Accurate interferometric retardance measurements." Appl. Opt. 36, 6473-6479 (1997). [CrossRef]
  37. H.-K. Teng, C. Chou, C.-N. Chang, C.-W. Lyu, and Y.-C. Huang, "Linear birefringence measurement with a differential-phase optical polarimeter," Jpn. J. Appl. Phys., Part 1 41, 3140-3144 (2002). [CrossRef]
  38. H.-K. Teng, C. Chou, C.-N. Chang, and H.-T. Wu, "Application of phase-to-amplitude conversion technique to linear birefringence measurements," Appl. Opt. 42, 1798-1804 (2003). [CrossRef] [PubMed]
  39. K.-C. Lang, C. Chou, and H.-K. Teng, "Polarized ring interferometer for linear birefringence measurement," Jpn. J. Appl. Phys., Part 1 42, 5826-5830 (2003). [CrossRef]
  40. S. Y. Lee, J. F. Lin, and Y. L. Lo, "A compact circular heterodyne interferometer for simultaneous measurements of variation in the magnitude of phase retardation and principal axis angle," Meas. Sci. Technol. 15, 978-982 (2004). [CrossRef]
  41. K.-C. Lang, H.-K. Teng, H.-F. Chang, C.-Y. Han, and C. Chou, "Two-dimensional linear birefringence vector measurement by polarization-stepping interferometer," Jpn. J. Appl. Phys., Part 1 43, 1633-1637 (2004). [CrossRef]
  42. W.-C. Kuo, K.-Y. Liao, G.-J. Jan, H.-K. Teng, and C. Chou, "Simultaneous measurement of phase retardation and fast-axis angle of phase retardation plate," Jpn. J. Appl. Phys., Part 1 44, 1095-1100 (2005). [CrossRef]
  43. H. Takasaki, M. Isobe, T. Masaki, A. Konda, T. Agastuma, and Y. Watanabe, "An automatic retardation meter for automatic polarimetry by means of an ADP polarization modulator," Appl. Opt. 3, 345-350 (1964). [CrossRef]
  44. L.-H. Shyu, C.-L. Chen, and D.-C. Su, "Method for measuring the retardation of a waveplate," Appl. Opt. 32, 4228-4230 (1993). [CrossRef] [PubMed]
  45. J. E. Hayden and S. D. Jacobs, "Automated spatially scanning ellipsometer for retardation measurements of transparent materials," Appl. Opt. 32, 6256-6263 (1993). [CrossRef] [PubMed]
  46. B. Wang and T. C. Oakberg, "A new instrument for measuring both the magnitude and angle of low level linear birefringence," Rev. Sci. Instrum. 70, 3847-3854 (1999). [CrossRef]
  47. B. Wang and W. Hellman, "Accuracy assessment of linear birefringence measurement system using a Soleil-Babinet compensator," Rev. Sci. Instrum. 72, 4066-4070 (2001). [CrossRef]
  48. F. Brandi, E. Polacco, and G. Ruoso, "Stress-optic modulator: A novel device for high sensitivity linear birefringence measurements," Meas. Sci. Technol. 12, 1503-1508 (2002). [CrossRef]
  49. S. Cattaneo, O. Zehnder, P. Gunter, and M. Kauranen, "Nonlinear optical technique for precise retardation measurement," Phys. Rev. Lett. 88, 243901 (2002). [CrossRef] [PubMed]
  50. S. Cattaneo and M. Kauranen, "Application of second-harmonic generation to retardation measurements," J. Opt. Soc. Am. B 20, 520-528 (2003). [CrossRef]
  51. S. C. Read, M. Lai, T. Cave, S. W. Morris, D. Shelton, A. Guest, and A. D. May, "Intracavity polarimeter for measuring small optical anisotropies," J. Opt. Soc. Am. B 5, 1832-1837 (1988). [CrossRef]
  52. Y. Zhang, S. Zhang, Y. Han, Y. Li, and X. Xu, "Method for the measurement of retardation of waveplates based on laser frequency-splitting technology," Opt. Eng. (Bellingham) 40, 1071-1075 (2001). [CrossRef]
  53. T. Müller, K. B. Wiberg, and P. H. Vaccaro, "Cavity ring-down polarimetry (CRDP): A new scheme for probing circular birefringence and circular dichroism in the gas phase," J. Phys. Chem. A 104, 5959-5968 (2000). [CrossRef]
  54. T. Müller, K. B. Wiberg, and P. H. Vaccaro, "An optical mounting system for cavity ring-down polarimetry," Rev. Sci. Instrum. 73, 1340-1342 (2002). [CrossRef]
  55. T. Müller, K. B. Wiberg, P. H. Vaccaro, J. R. Cheeseman, and M. J. Frisch, "Cavity ring-down polarimetry (CRDP): Theoretical and experimental characterization," J. Opt. Soc. Am. B 19, 125-141 (2002). [CrossRef]
  56. S. M. Wilson, K. B. Wiberg, J. R. Cheeseman, M. J. Frisch, and P. H. Vaccaro, "Nonresonant optical activity of isolated organic molecules," J. Phys. Chem. A 109, 11752-11764 (2005). [CrossRef] [PubMed]
  57. J. J. Scherer, J. B. Paul, A. O'Keefe, and R. J. Saykally, "Cavity ringdown laser absorption spectroscopy: History, development, and application to pulsed molecular beams," Chem. Rev. (Washington, D.C.) 97, 25-51 (1997). [CrossRef]
  58. M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, "Cavity ring-down spectroscopy," J. Chem. Soc., Faraday Trans. 94, 337-351 (1998). [CrossRef]
  59. G. Berden, R. Peeters, and G. Meijer, "Cavity ring-down spectroscopy: Experimental schemes and applications," Int. Rev. Phys. Chem. 19, 565-607 (2000). [CrossRef]
  60. C. Vallance, "Innovations in cavity ring-down spectroscopy," New J. Chem. 29, 867-874 (2005). [CrossRef]
  61. At λ=355nm, the empty cavity lifetime, as extracted from the sum of I⊥ and I‖ signals [cf., Eq. ], was typically 3.790±0.035μs, corresponding to an effective mirror reflectivity of R=99.85%. The intracavity losses incurred by insertion of the targeted quarter-waveplate decreased these values to 1.206±0.012μs and R=99.53%.
  62. In practice, the waveplate under investigation was tilted away from normal incidence by a minute amount (≤0.1mrad deviation) to avoid slight, yet perceptible, interference effects from the creation of secondary cavities (i.e., between mirror and waveplate) in the resonator assembly.
  63. M. Bass, E. W. van Stryland, D. R. Williams, and W. L. Wolfe, Handbook of Optics, Volume II: Devices, Measurements, and Properties, 2nd ed. (McGraw-Hill, 1995).
  64. E. A. West and M. H. Smith, "Polarization errors associated with birefringent waveplates," Opt. Eng. (Bellingham) 34, 1574-1580 (1995). [CrossRef]
  65. D. A. Holmes, "Exact theory of retardation plates," J. Opt. Soc. Am. 54, 1115-1120 (1964). [CrossRef]
  66. K. Pietraszkiewicz, W. A. Wozniak, and P. Kurzynowski, "Effect of multiple reflections in retardation plates with elliptical birefringence," J. Opt. Soc. Am. A 12, 420-424 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited