OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 9 — Sep. 1, 2007
  • pp: 2509–2516

High-power tunable, 0.5 3 THz radiation source based on nonlinear difference frequency mixing of C O 2 laser lines

Sergei Ya. Tochitsky, Chieh Sung, Sarah E. Trubnick, Chan Joshi, and Konstantin L. Vodopyanov  »View Author Affiliations

JOSA B, Vol. 24, Issue 9, pp. 2509-2516 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (502 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Terahertz (THz) pulses with a peak power of 2 kW were generated in a noncollinear phase-matched GaAs crystal at room temperature. Two 200 ns pulses from a dual-beam TEA C O 2 laser were used for difference frequency mixing in the crystal. A comb of narrow lines ( Δ ν ν 10 4 ) was obtained in the 0.5 3 THz range with a step of 40 GHz . By comparing the effective nonlinearity of GaSe with that of GaAs for THz generation, the electro-optic nonlinear coefficient for GaSe was measured to be d eo = 24.3 ± 10 % pm V . Using simulations we show that a 1 kW THz pulse could be amplified by a factor of 2 × 10 4 to a 10 MW level in a 2 m long single-pass free-electron laser.

© 2007 Optical Society of America

OCIS Codes
(140.2600) Lasers and laser optics : Free-electron lasers (FELs)
(140.3470) Lasers and laser optics : Lasers, carbon dioxide
(160.4330) Materials : Nonlinear optical materials
(190.2620) Nonlinear optics : Harmonic generation and mixing

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 29, 2007
Revised Manuscript: May 2, 2007
Manuscript Accepted: May 4, 2007
Published: August 31, 2007

Sergei Ya. Tochitsky, Chieh Sung, Sarah E. Trubnick, Chan Joshi, and Konstantin L. Vodopyanov, "High-power tunable, 0.5-3 THz radiation source based on nonlinear difference frequency mixing of CO2 laser lines," J. Opt. Soc. Am. B 24, 2509-2516 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. M. Koch, "Terahertz technology: a land to be discovered," Opt. Photonics News 18, 21-25 (2007). [CrossRef]
  2. V. V. Apollonov, R. Bocquet, A. Boscheron, A. I. Gribenyukov, V. V. Korotkova, C. Rouyer, A. G. Suzdal'tsev, and Yu. A. Shakir, "Far infrared generation by CO2 lasers frequencies subtraction in a ZnGeP2 crystal," Int. J. Infrared Millim. Waves 17, 1465-1472 (1996). [CrossRef]
  3. W. Shi and Y. J. Ding, "Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phospide," Appl. Phys. Lett. 83, 848-850 (2003). [CrossRef]
  4. M. A. Piestrip, R. N. Fleming, and R. H. Pantell, "Continuously tunable submillimeter wave source," Appl. Phys. Lett. 26, 418-421 (1975). [CrossRef]
  5. K. Kawase, M. Sato, T. Taniuchi, and H. Ito, "Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler," Appl. Phys. Lett. 68, 2483-2485 (1996). [CrossRef]
  6. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, "Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal," Opt. Lett. 27, 1454-1456 (2002). [CrossRef]
  7. R. L. Aggarwal and B. Lax, "Noncollinear phase matching in GaAs," Appl. Phys. Lett. 22, 329-330 (1973). [CrossRef]
  8. S. Ya. Tochitsky, J. E. Ralph, C. Sung, and C. Joshi, "Generation of magawatt-power terahertz pulses by noncollinear difference-frequency mixing in GaAs," J. Appl. Phys. 98, 026101 (2005). [CrossRef]
  9. G. D. Boyd, T. J. Bridges, M. A. Pollack, and E. H. Turner, "Microwave nonlinear susceptibilities due to electronic and ionic anharmonicities in acentric crystals," Phys. Rev. Lett. 26, 387-390 (1971). [CrossRef]
  10. V. I. Sokolov and V. K. Subashiev, "Linear electroptical effect in gallium selenide," Sov. Phys. Solid State 14, 178-183 (1972).
  11. N. VanTran and C. K. N. Patel, "Free-carrier magneto-optical effects in far-infrared difference-frequency generation in semiconductors," Phys. Rev. Lett. 22, 463-466 (1971). [CrossRef]
  12. F. Zernike, "Temperature-dependent phase matching for far-infrared difference-frequency generation in InSb," Phys. Rev. Lett. 22, 931-933 (1971). [CrossRef]
  13. T. J. Bridges and A. R. Strand, "Submillimeter wave generation by difference-frequency mixing in GaAs," Appl. Phys. Lett. 20, 382-384 (1973). [CrossRef]
  14. N. Lee, B. Lax, and R. L. Aggarwal, "High power far infrared generation in GaAs," Opt. Commun. 18, 50 (1976). [CrossRef]
  15. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Crystals (Springer, 1997).
  16. C. J. Johnson, G. H. Sherman, and R. Weil, "Far infrared measurement of the dielectric properties of GaAs and CdTe at 300 K and 8 K," Appl. Opt. 8, 1667-1671 (1969). [CrossRef] [PubMed]
  17. F. Pedrotti and L. Pedrotti, Introduction to Optics (Prentice-Hall, 1993).
  18. A. G. Maki, C. C. Chou, K. M. Evenson, L. R. Zink, and J. T. Shy, "Improved molecular constants and frequencies for the CO2 laser from new high-J and hot band frequency measurements," J. Mol. Spectrosc. 167, 211-224 (1994). [CrossRef]
  19. S. Ya. Tochitsky, V. O. Petukhov, V. A. Gorobets, V. V. Churakov, and V. N. Jakimovich, "Efficient continuous-wave frequency doubling of a tunable CO2 laser in AgGaSe2," Appl. Opt. 36, 1882-1888 (1997). [CrossRef] [PubMed]
  20. B. E. Cole, J. B. Williams, B. T. King, M. S. Sherwin, and C. R. Stanley, "Coherent manipulation of semiconductor bits with terahertz radiation," Nature 410, 60-63 (2001). [CrossRef] [PubMed]
  21. W. B. Colson, E. D. Johnson, M. J. Kelley, and H. A. Schwettman, "Putting free electron lasers to work," Phys. Today 55(1), 35-41 (2002). [CrossRef]
  22. C. Sung, S. Ya. Tochitsky, S. Reiche, J. B. Rosenzweig, C. Pellegrini, and C. Joshi, "Seeded free-electron and inverse free-electron laser techniques for radiation amplification and electron microbunching in the terahertz range," Phys. Rev. ST Accel. Beams 9, 120703 (2006). [CrossRef]
  23. S. Reihe, "Genesis 1.3: a fully 3D time-dependent FEL simulation code," Nucl. Instrum. Methods Phys. Res. A 429, 243-248 (1999). [CrossRef]
  24. S. G. Anderson, M. Loh, P. Musumeci, J. B. Rosenzweig, H. Suk, and M. C. Thompson, "Commisioning and measurements of the Neptune photoinjector," in Advanced Accelerator Concepts, P.L.Colestock and S.Kelly, eds., AIP Conf. Proc. 569, 487-499 (2000).
  25. T. C. Marshall, Free Electron Lasers (Macmillan, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited