OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 9 — Sep. 1, 2007
  • pp: 2517–2520

Quantum CNOT gates with orbital angular momentum and polarization of single-photon quantum logic

Li-Ping Deng, Haibo Wang, and Kaige Wang  »View Author Affiliations

JOSA B, Vol. 24, Issue 9, pp. 2517-2520 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (118 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a polarization-controlled-NOT (P-CNOT) gate and an orbital-angular-momentum-controlled-NOT (OAM-CNOT) gate for single-photon two-qubit quantum logic. Both of the controlled-NOT (CNOT) gates are simple and deterministic. Moreover the entanglement swap between polarization and orbital angular momentum (OAM) can be realized using the P-CNOT gate and the OAM-CNOT gate.

© 2007 Optical Society of America

OCIS Codes
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: March 15, 2007
Revised Manuscript: May 24, 2007
Manuscript Accepted: June 7, 2007
Published: August 31, 2007

Li-Ping Deng, Haibo Wang, and Kaige Wang, "Quantum CNOT gates with orbital angular momentum and polarization of single-photon quantum logic," J. Opt. Soc. Am. B 24, 2517-2520 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. D. P. DiVincenzo, "Two-bit gates are universal for quantum computation," Phys. Rev. A 51, 1015 (1995). [CrossRef] [PubMed]
  2. E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001). [CrossRef] [PubMed]
  3. T. B. Pittman, B. C. Jacobs and J. D. Franson, "Probabilistic quantum logic operations using polarizing beam splitters," Phys. Rev. A 64, 062311 (2001). [CrossRef]
  4. T. C. Ralph, N. K. Langford, T. B. Bell, and A. G. White, "Linear optical controlled-NOT gate in the coincidence basis," Phys. Rev. A 65, 062324 (2002). [CrossRef]
  5. J. L. O'Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, "Demonstration of an all-optical quantum controlled-NOT gate," Nature 426, 264-267 (2003). [CrossRef] [PubMed]
  6. S. Gasparoni, J. Pan, P. Walther, T. Rudolph, and A. Zeilinger, "Realization of a photonic controlled-NOT gate sufficient for quantum computation," Phys. Rev. Lett. 93, 020504 (2004). [CrossRef] [PubMed]
  7. N. J. Cerf, C. Adami, and P. G. Kwiat, "Optical simulation of quantum logic," Phys. Rev. A 57, R1477 (1998). [CrossRef]
  8. J. C. Howell and J. A. Yeazell, "Reducing the complexity of linear optics quantum circuits," Phys. Rev. A 61, 052303 (2000). [CrossRef]
  9. B.-G. Englert, C. Kurtsiefer, and H. Weinfurter, "Universal unitary gate for single-photon two-qubit states," Phys. Rev. A 63, 032303 (2001). [CrossRef]
  10. Y.-H. Kim, "Single-photon two-qubit entangled states: Preparation and measurement," Phys. Rev. A 67, 040301 (2003). [CrossRef]
  11. M. Fiorentino, T. Kim, and F. N. C. Wong, "Single-photon two-qubit SWAP gate for entanglement manipulation," Phys. Rev. A 72, 012318 (2005). [CrossRef]
  12. M. Fiorentino and F. N. C. Wong, "Deterministic controlled-NOT gate for single-photon two-qubit quantum logic," Phys. Rev. Lett. 93, 070502 (2004). [CrossRef] [PubMed]
  13. A. N. de Oliveira, S. P. Walborn, and C. H. Monken, "Implementing the Deutsch algorithm with polarization and transverse spatial modes," J. Opt. Soc. Am. B 7, 288-292 (2005).
  14. S. Roychowdhury, V. K. Jaiswal, and R. P. Singh,"Implementing controlled NOT gate with optical vortex," Opt. Commun. 236, 419-424 (2004). [CrossRef]
  15. G. F. Calvo and A. Picón, "Spin-induced angular momentum switching," Opt. Lett. 32, 838-840 (2007). [CrossRef] [PubMed]
  16. A. G. White, A. Gilchrist, G. J. Pryde, J. L. O'Brien, M. J. Bremner, and N. K. Langford, "Measuring two-qubit gates," J. Opt. Soc. Am. B 24, 172-183 (2007). [CrossRef]
  17. J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, "Generation of hyperentangled photon pairs," Phys. Rev. Lett. 95, 260501 (2005). [CrossRef]
  18. L. Marrucci, C. Manzo, and D. Paparo, "Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media," Phys. Rev. Lett. 96, 163905 (2006). [CrossRef] [PubMed]
  19. G. F. Calvo, A. Picón, and E. Bagan, "Quantum field theory of photons with orbital angular momentum," Phys. Rev. A 73, 013805 (2006). [CrossRef]
  20. N. R. Heckenberg, R. McDuff, C. P. Smith, H. Rubinsztein-Dunlop, and M. J. Wegener, "Laser beams with phase singularities," Opt. Quantum Electron. 24, S951-S962 (1992). [CrossRef]
  21. V. Y. Bazheov, M. S. Soskin, and M. V. Vasnetsov, "Screw dislocations in light wavefronts," J. Mod. Opt. 39, 985-990 (1992). [CrossRef]
  22. J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, "The production of multiringed Laguerre-Gaussian modes by computer-generated holograms," J. Mod. Opt. 45, 1231-1237 (1998). [CrossRef]
  23. A. Vaziri, G. Weihs, and A. Zeilinger, "Superpositions of the orbital angular momentum for applications in quantum experiments," J. Opt. B: Quantum Semiclassical Opt. 4, S47-S51 (2002). [CrossRef]
  24. S. Feng and H. G. Winful, "Physical origin of the Gouy phase shift," Opt. Lett. 26, 485-487 (2001). [CrossRef]
  25. J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, "Measuring the orbital angular momentum of a single photon," Phys. Rev. Lett. 88, 257901 (2002). [CrossRef] [PubMed]
  26. G. F. Calvo, A. Picón, and A. Bramon, "Measuring two-photon orbital angular momentum entanglement," Phys. Rev. A 75, 012319 (2007). [CrossRef]
  27. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, "Entanglement of the orbital angular momentum states of photons," Nature 412, 313-316 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited