OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 24, Iss. 9 — Sep. 1, 2007
  • pp: 2545–2555

Terahertz transmission properties of quasiperiodic and aperiodic aperture arrays

Amit Agrawal, Tatsunosuke Matsui, Z. Valy Vardeny, and Ajay Nahata  »View Author Affiliations

JOSA B, Vol. 24, Issue 9, pp. 2545-2555 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1081 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recent demonstrations have shown that the transmission through a subwavelength aperture in metal film placed in a periodic lattice or an aperiodic structure is significantly increased relative to a bare aperture. Using terahertz time-domain spectroscopy, we analyze the enhanced transmission properties of aperiodic and corresponding random 2D aperture arrays perforated in metallic films, which include quasicrystals and quasicrystal approximates. We demonstrate that the transmission enhancement phenomenon occurs for aperture arrays having discrete Fourier components in the 2D geometrical structure factor. We further show that the phenomenon is valid for a larger class of 2D aperture array designs that can be tailored to exhibit desired resonances and hence is more general. The inherent relationship between various features observed in the measured time-domain electric field, calculated transmission spectra, and the real and reciprocal space representation of the aperture array is discussed in detail. The results are interpreted in terms of Fano-type interference mechanism. The importance of antiresonance features observed in the transmission spectra is also discussed.

© 2007 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.3090) Physical optics : Infrared, far
(320.7160) Ultrafast optics : Ultrafast technology

ToC Category:
THz Domain

Original Manuscript: May 22, 2007
Revised Manuscript: July 13, 2007
Manuscript Accepted: July 20, 2007
Published: August 31, 2007

Amit Agrawal, Tatsunosuke Matsui, Z. Valy Vardeny, and Ajay Nahata, "Terahertz transmission properties of quasiperiodic and aperiodic aperture arrays," J. Opt. Soc. Am. B 24, 2545-2555 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998). [CrossRef]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  3. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001). [CrossRef] [PubMed]
  4. E. Popov, M. Neviere, S. Enoch, and R. Reinisch, "Theory of light transmission through subwavelength periodic hole arrays," Phys. Rev. B 62, 16100-16108 (2000). [CrossRef]
  5. H. J. Lezec and T. Thio, "Diffraction evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 3629-3651 (2004). [CrossRef] [PubMed]
  6. M. M. J. Treacy, "Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings," Phys. Rev. B 66, 195105 (2002). [CrossRef]
  7. J. Gomez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, "Enhanced transmission of THz radiation through subwavelength holes," Phys. Rev. B 68, 201306 (2003). [CrossRef]
  8. H. Cao and A. Nahata, "Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures," Opt. Express 12, 1004-1010 (2004). [CrossRef] [PubMed]
  9. D. Qu, D. Grischkowsky, and W. Zhang, "Terahertz transmission properties of thin, subwavelength metallic hole arrays," Opt. Lett. 29, 896-898 (2004). [CrossRef] [PubMed]
  10. F. Miyamaru and M. Hangyo, "Finite size effect of transmission property for metal hole arrays in subterahertz region," Appl. Phys. Lett. 84, 2742-2744 (2004). [CrossRef]
  11. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of sub-wavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004). [CrossRef] [PubMed]
  12. T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, "Transmission resonances through aperiodic arrays of subwavelength apertures," Nature 446, 517-521 (2007). [CrossRef] [PubMed]
  13. M. Sun, J. Tian, Z. Y. Li, B.-Y. Cheng, D.-Z. Zhang, A.-Z. Jin, and H.-F. Yang, "The role of periodicity in enhanced transmission through subwavelength hole arrays," Chin. Phys. Lett. 23, 486-488 (2006). [CrossRef]
  14. F. Przybilla, C. Genet, and T. W. Ebbesen, "Enhanced transmission through Penrose subwavelength hole arrays," Appl. Phys. Lett. 89, 121115 (2006). [CrossRef]
  15. N. Papasimakis, V. A. Fedotov, F. J. Garcia de Abajo, A. S. Schwanecke, and N. I. Zheludev, "Enhanced microwave transmission through quasicrystal hole arrays," arXiv:0704.2552v1 (2007).
  16. A. Agrawal, H. Cao, and A. Nahata, "Time-domain analysis of enhanced transmission through a single subwavelength aperture," Opt. Express 13, 3535-3542 (2005). [CrossRef] [PubMed]
  17. C. Janot, Quasicrystals: A Primer, 2nd ed. (Oxford U. Press, 1994).
  18. D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, "Metallic phase with long-range orientational order and no translational symmetry," Phys. Rev. Lett. 53, 1951-1953 (1984). [CrossRef]
  19. D. Levine and P. J. Steinhardt, "Quasicrystals: a new class of ordered structures," Phys. Rev. Lett. 53, 2477-2480 (1984). [CrossRef]
  20. M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, P. Millar, and R. M. De La Rue, "Diffraction and transmission of light in low-refractive index Penrose-tiled photonic quasicrystals," J. Phys.: Condens. Matter 13, 10459-10470 (2001). [CrossRef]
  21. L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, "Light transport through the band-edge states of Fibonacci quasicrystals," Phys. Rev. Lett. 90, 055501 (2003). [CrossRef] [PubMed]
  22. B. Freedman, G. Bartal, M. Segev, R. Lifshitz, D. N. Christodoulides, and J. W. Fleischer, "Wave and defect dynamics in nonlinear photonic quasicrystals," Nature 440, 1166-1169 (2006). [CrossRef] [PubMed]
  23. D. Grischkowsky, in Frontiers in Nonlinear Optics, H.Walther, N.Koroteev, and M.O.Scully, eds. (Institute of Physics Publishing, 1992), and references therein.
  24. F. J. Garcia de Abajo, J. J. Saenz, I. Campillo, and J. S. Dolado, "Site and lattice resonances in metallic hole arrays," Opt. Express 14, 7-18 (2006). [CrossRef] [PubMed]
  25. R. Penrose, "The role of aesthetics in pure and applied mathematical research," Bull. Inst. Math. Appl. 10, 266-271 (1974).
  26. M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, "Complete photonic bandgaps in 12-fold symmetric quasicrystals," Nature 404, 740-743 (2000). [CrossRef] [PubMed]
  27. P. A. Stampfli, "Dodecagonal quasiperiodic lattice in two dimensions," Helv. Phys. Acta 59, 1260-1263 (1986).
  28. M. Oxborrow and L. C. Henley, "Random square-triangle tilings: a model for twelve-fold symmetric quasicrystals," Phys. Rev. B 48, 6966-6998 (1993). [CrossRef]
  29. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 83, 6779-6782 (1998). [CrossRef]
  30. H. Cao and A. Nahata, "Influence of aperture shape on transmission properties of a periodic array of subwavelength apertures," Opt. Express 12, 3664-3672 (2004). [CrossRef] [PubMed]
  31. J. E. S. Socolar, "Simple octagonal and dodecagonal quasicrystals," Phys. Rev. B 39, 10519 (1989). [CrossRef]
  32. T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, "Surface plasmon enhanced transmission through hole arrays in Cr films," J. Opt. Soc. Am. B 16, 1743-1748 (1999). [CrossRef]
  33. M. Sarrazin, J. P. Vigneron, and J. M. Vigoureux, "Role of Wood anomalies in optical properties of thin metallic films with bidimensional array of subwavelength holes," Phys. Rev. B 67, 085415 (2003). [CrossRef]
  34. U. Fano, "Effects of configuration interaction on intensities and phase shifts," Phys. Rev. 124, 1866-1873 (1961). [CrossRef]
  35. C. Genet, M. P. van Exter, and J. P. Woerdman, "Fano-type interpretation of red shifts and red tails in hole array transmission spectra," Opt. Commun. 225, 331-336 (2003). [CrossRef]
  36. R. Österbacka, X. M. Jiang, C. P. An, B. Horovitz, and Z. V. Vardeny, "Photoinduced quantum interference antiresonances in π-conjugated polymers," Phys. Rev. Lett. 88, 226401 (2002). [CrossRef] [PubMed]
  37. T. D. M. Lee, G. J. Parker, M. E. Zoorob, S. J. Cox, and M. D. B. Charlton, "Design and simulation of highly symmetric photonic quasi-crystals," Nanotechnology 16, 2703-2706 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited