OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 1 — Jan. 1, 2008
  • pp: 103–110

Monte Carlo studies of the fundamental limits of the intrinsic hyperpolarizability

Mark C. Kuzyk and Mark G. Kuzyk  »View Author Affiliations

JOSA B, Vol. 25, Issue 1, pp. 103-110 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (727 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The off-resonant hyperpolarizability is calculated by using the dipole-free sum-over-states expression from a randomly chosen set of energies and transition dipole moments that are forced to be consistent with the sum rules. The process is repeated so that the distribution of hyperpolarizabilities can be determined. We find this distribution to be a cycloidlike function. In contrast to variational techniques that when applied to the potential energy function yield an intrinsic hyperpolarizability less than 0.71, our Monte Carlo method yields values that approach unity. While many transition dipole moments are large when the calculated hyperpolarizability is near the fundamental limit, only two excited states dominate the hyperpolarizability—consistent with the three-level ansatz. We speculate on the character of the Hamiltonian that is needed to optimize the intrinsic hyperpolarizability.

© 2008 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(020.4900) Atomic and molecular physics : Oscillator strengths
(190.0190) Nonlinear optics : Nonlinear optics

ToC Category:
Atomic and Molecular Physics

Original Manuscript: August 21, 2007
Revised Manuscript: October 27, 2007
Manuscript Accepted: November 2, 2007
Published: December 21, 2007

Mark C. Kuzyk and Mark G. Kuzyk, "Monte Carlo studies of the fundamental limits of the intrinsic hyperpolarizability," J. Opt. Soc. Am. B 25, 103-110 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. Q. Y. Chen, L. Kuang, Z. Y. Wang, and E. H. Sargent, "Cross-linked C-60 polymer breaches the quantum gap," Nano Lett. 4, 1673-1675 (2004). [CrossRef]
  2. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999). [CrossRef]
  3. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001). [CrossRef] [PubMed]
  4. A. Karotki, M. Drobizhev, Y. Dzenis, P. N. Taylor, H. L. Anderson, and A. Rebane, "Dramatic enhancement of intrinsic two-photon absorption in a conjugated porphyrin dimer," Phys. Chem. Chem. Phys. 6, 7-10 (2004). [CrossRef]
  5. I. Roy, O. T. Y., H. E. Pudavar, E. J. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty, and P. N. Prasad, "Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy," J. Am. Chem. Soc. 125, 7860-7865 (2003). [CrossRef] [PubMed]
  6. M. G. Kuzyk, "Physical limits on electronic nonlinear molecular susceptibilities," Phys. Rev. Lett. 85, 1218-1221 (2000). [CrossRef] [PubMed]
  7. M. G. Kuzyk, "Erratum: physical limits on electronic nonlinear molecular susceptibilities," Phys. Rev. Lett. 90, 039902 (2003). [CrossRef]
  8. B. Champagne and B. Kirtman, "Comment on 'physical limits on electronic nonlinear molecular susceptibilities'," Phys. Rev. Lett. 95, 109401 (2005). [CrossRef] [PubMed]
  9. M. G. Kuzyk, "Reply to comment on 'physical limits on electronic nonlinear molecular susceptibilities'," Phys. Rev. Lett. 95, 109402 (2005). [CrossRef]
  10. M. G. Kuzyk, "Compact sum-over-states expression without dipolar terms for calculating nonlinear susceptibilities," Phys. Rev. A 72, 053819 (2005). [CrossRef]
  11. M. G. Kuzyk, "Fundamental limits of all nonlinear-optical phenomena that are representable by a second-order susceptibility," J. Chem. Phys. 125, 154108 (2006). [CrossRef] [PubMed]
  12. K. Tripathi, P. Moreno, M. G. Kuzyk, B. J. Coe, K. Clays, and A. M. Kelley, "Why hyperpolarizabilities fall short of the fundamental quantum limits," J. Chem. Phys. 121, 7932-7945 (2004). [CrossRef]
  13. J. Zhou, M. Kuzyk, and D. S. Watkins, "Pushing the hyperpolarizability to the limit," Opt. Lett. 31, 2891-2893 (2006). [CrossRef] [PubMed]
  14. J. Pérez Moreno, Y. Zhao, K. Clays, and M. G. Kuzyk, "Modulated conjugation as a means for attaining a record high intrinsic hyperpolarizability," Opt. Lett. 32, 59-61 (2007). [CrossRef]
  15. J. Zhou, U. B. Szafruga, D. S. Watkins, and M. G. Kuzyk, "Optimizing potential energy functions for maximal intrinsic hyperpolarizability," Phys. Rev. A 76, 053831 (2007). [CrossRef]
  16. M. G. Kuzyk and D. S. Watkins, "The effects of geometry on the hyperpolarizability," J. Chem. Phys. 124, 244104 (2006). [CrossRef] [PubMed]
  17. J. Pérez Moreno, I. Asselberghs, Y. Zhao, K. Song, H. Nakanishi, S. Okada, K. Nogi, O.-K. Kim, J. Je, J. Matrai, M. De Mayer, and M. G. Kuzyk, "Combined molecular and supramolecular bottom-up nano-engineering for enhanced nonlinear optical response: experiments, modelling and approaching the fundamental limit," J. Chem. Phys. 126, 074705 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited