OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 1 — Jan. 1, 2008
  • pp: 111–118

Tunable optical fiber polarization elements based on long-period gratings inscribed in birefringent microstructured fibers

Dimitrios C. Zografopoulos and Emmanouil E. Kriezis  »View Author Affiliations


JOSA B, Vol. 25, Issue 1, pp. 111-118 (2008)
http://dx.doi.org/10.1364/JOSAB.25.000111


View Full Text Article

Enhanced HTML    Acrobat PDF (868 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The polarization properties of long-period gratings inscribed in highly birefringent photonic crystal fibers are investigated in the context of a multipole method analysis. It is demonstrated that by proper design such fibers may act as selective polarization elements, showing an ample separation of the resonance peaks corresponding to the two orthogonal polarization states. Furthermore, the infiltration of the fiber’s capillaries with an isotropic liquid may lead to extensive tuning of the resonant wavelengths. A tuning efficiency of up to 10 nm ° C is demonstrated in the case of a typical infiltrated birefringent photonic crystal fiber.

© 2008 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2400) Fiber optics and optical communications : Fiber properties
(230.3990) Optical devices : Micro-optical devices
(230.5440) Optical devices : Polarization-selective devices

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 8, 2007
Revised Manuscript: November 3, 2007
Manuscript Accepted: November 6, 2007
Published: December 21, 2007

Citation
Dimitrios C. Zografopoulos and Emmanouil E. Kriezis, "Tunable optical fiber polarization elements based on long-period gratings inscribed in birefringent microstructured fibers," J. Opt. Soc. Am. B 25, 111-118 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-1-111


Sort:  Year  |  Journal  |  Reset  

References

  1. J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003). [CrossRef] [PubMed]
  2. A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers (Kluwer, 2003). [CrossRef]
  3. T. A. Birks, J. C. Knight, and P. St. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  4. A. Ferrando, E. Silvestre, P. Andrés, J. J. Miret, and M. V. Andres, "Designing the properties of dispersion-flattened photonic crystal fibers," Opt. Express 9, 687-697 (2001). [CrossRef] [PubMed]
  5. W. H. Reeves, J. C. Knight, P. St. Russell, and P. J. Roberts, "Demonstration of ultra-flattened dispersion in photonic crystal fibers," Opt. Express 10, 609-613 (2002). [PubMed]
  6. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. Russell, and J. P. de Sandro, "Large mode area photonic crystal fibre," Electron. Lett. 34, 1347-1348 (1998). [CrossRef]
  7. K. P. Hansen, "Dispersion flattened hybrid-core nonlinear photonic crystal fiber," Opt. Express 11, 1503-1509 (2003). [CrossRef] [PubMed]
  8. C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, and B. J. Eggleton, "Highly tunable birefringent microstructured optical fiber," Opt. Lett. 27, 842-844 (2002). [CrossRef]
  9. R. Zhang, J. Teipel, and H. Giessen, "Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation," Opt. Express 14, 6800-6812 (2006). [CrossRef] [PubMed]
  10. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11, 2589-2596 (2003). [CrossRef] [PubMed]
  11. T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wójcik, "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibers," Meas. Sci. Technol. 17, 985-991 (2006). [CrossRef]
  12. D. C. Zografopoulos, E. E. Kriezis, and T. D. Tsiboukis, "Photonic crystal-liquid crystal fibers for single-polarization or high-birefringence guidance," Opt. Express 14, 914-925 (2006). [CrossRef] [PubMed]
  13. D. C. Zografopoulos, E. E. Kriezis, and T. D. Tsiboukis, "Tunable highly birefringent bandgap-guiding liquid-crystal microstructured fibers," J. Lightwave Technol. 44, 3427-3432 (2006). [CrossRef]
  14. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996). [CrossRef]
  15. J. R. Qian and H. F. Chen, "Gain flattening fibre filters using phase-shifted long period fibre gratings," Electron. Lett. 34, 1132-1133 (1998). [CrossRef]
  16. A. S. Kurkov, M. Douay, O. Duhem, B. Leleu, J. F. Henninot, J. F. Bayon, and L. Rivoallan, "Long-period fibre gratings as a wavelength selective polarisation element," Electron. Lett. 33, 616-617 (1997). [CrossRef]
  17. B. Ortega, L. Dong, W. F. Liu, J. P. de Sandro, L. Reekie, S. I. Tsypina, V. N. Bagratashvili, and R. I. Laming, "High-performance optical fiber polarizers based on long-period gratings in birefringent optical fibers," IEEE Photon. Technol. Lett. 9, 1370-1372 (1997). [CrossRef]
  18. J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, and J. M. Jeong, "Spectral shape tunable band-rejection filter using a long-period fiber grating with divided coil heaters," IEEE Photon. Technol. Lett. 15, 407-409 (2003). [CrossRef]
  19. D. B. Stegall and T. Erdogan, "Dispersion control with use of long-period fiber gratings," J. Opt. Soc. Am. A 17, 304-312 (2000). [CrossRef]
  20. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997). [CrossRef]
  21. S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci. Technol. 14, R49-R61 (2003). [CrossRef]
  22. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T. A. Strasser, "Grating resonances in air-silica microstructured optical fibers," Opt. Lett. 24, 1460-1462 (1999). [CrossRef]
  23. G. Kakarantzas, T. A. Birks, and P. St. Russell, "Structural long-period gratings in photonic crystal fibers," Opt. Lett. 27, 1013-1015 (2002). [CrossRef]
  24. H. Dobb, K. Kalli, and D. J. Webb, "Temperature-insensitive long period grating sensors in photonic crystal fiber," Electron. Lett. 40, 657-658 (2004). [CrossRef]
  25. J. H. Lim, K. S. Lee, J. C. Kim, B. H. Lee, "Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure," Opt. Lett. 29, 331-333 (2004). [CrossRef] [PubMed]
  26. Y. P. Wang, L. M. Xiao, D. N. Wang, and W. Jin, "In-fiber polarizer based on a long-period fiber grating written on photonic crystal fiber," Opt. Lett. 32, 1035-1037 (2007). [CrossRef] [PubMed]
  27. N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, and K. P. Hansen, "Modal cutoff and the V parameter in photonic crystal fibers," Opt. Lett. 28, 1879-1881 (2003). [CrossRef] [PubMed]
  28. G. Renversez, F. Bordas, and B. T. Kuhlmey, "Second mode transition in microstructured optical fibers: determination of the critical geometrical parameter and study of the matrix refractive index and effects of cladding size," Opt. Lett. 30, 1264-1267 (2005). [CrossRef] [PubMed]
  29. B. T. Kuhlmey, R. C. McPhedran, C. M. de Sterke, P. A. Robinson, G. Renversez, and D. Maystre, "Microstructured optical fibers: where's the edge?" Opt. Express 10, 1285-1290 (2002). [PubMed]
  30. B. T. Kuhlmey, H. C. Nguyen, M. J. Steel, and B. J. Eggleton, "Confinement loss in adiabatic photonic crystal fiber tapers," J. Opt. Soc. Am. B 23, 1965-1974 (2006). [CrossRef]
  31. P. R. McIsaac, "Symmetry-induced modal characteristics of uniform waveguides--I: summary of results," IEEE Trans. Microwave Theory Tech. MTT-23, 421-429 (1975). [CrossRef]
  32. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002). [CrossRef]
  33. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, "Multipole method for microstructured optical fibers. II. Implementation," J. Opt. Soc. Am. B 19, 2331-2340 (2002). [CrossRef]
  34. CUDOS Microstructured Optical Fiber Utilities package, http://www.physics.usyd.edu.au/cudos/mofsoftware.
  35. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, "Optical properties of a low-loss polarization-maintaining photonic crystal fiber," Opt. Express 9, 676-680 (2001). [CrossRef] [PubMed]
  36. M. Szpulak, J. Olszewski, T. Martynkien, W. Urbanczyk, and J. Wójcik, "Polarizing photonic crystal fibers with wide operation range," Opt. Commun. 239, 91-97 (2004). [CrossRef]
  37. PM-1550-01, Polarisation Maintaining PCF by Blaze Photonics, http://blazephotonics.com.
  38. B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, and G. L. Burdge, "Cladding-mode-resonances in air-silica microstructure optical fibers," J. Lightwave Technol. 18, 1084-1100 (2000). [CrossRef]
  39. D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, "Long-period fibre grating fabrication with focused CO2 laser pulses," Electron. Lett. 34, 302-303 (1998). [CrossRef]
  40. P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, "Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings," IEEE Photon. Technol. Lett. 12, 495-497 (2000). [CrossRef]
  41. P. Steinvurzel, E. D. Moore, E. C. Magi, and B. J. Eggleton, "Tuning properties of long period gratings in photonic bandgap fibers," Opt. Lett. 31, 2103-2105 (2006). [CrossRef] [PubMed]
  42. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, "Photonic crystal fiber long-period gratings for biochemical sensing," Opt. Express 14, 8224-8231 (2006). [CrossRef] [PubMed]
  43. D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, "Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers," Opt. Express 15, 7901-7912 (2007). [CrossRef] [PubMed]
  44. Cargille Labs, http://cargille.com.
  45. G. B. Hocker, "Fiber-optic sensing of pressure and temperature," Appl. Opt. 18, 1445-1448 (1979). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited