OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 1 — Jan. 1, 2008
  • pp: 31–39

Spectral and spatial properties of the spontaneous emission enhancement in photonic crystal cavities

Friedhard Römer and Bernd Witzigmann  »View Author Affiliations


JOSA B, Vol. 25, Issue 1, pp. 31-39 (2008)
http://dx.doi.org/10.1364/JOSAB.25.000031


View Full Text Article

Enhanced HTML    Acrobat PDF (681 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Although the theory of photonic crystal cavities has been widely investigated, the interpretation of the experimental emission spectra still creates a challenge because the spontaneous emission enhancement is a spatially and spectrally varying property. We present a comprehensive simulation and analysis of the emission spectrum of photonic crystal cavities, considering the spatially and spectrally varying spontaneous emission enhancement, the material loss, and the coupling efficiency to the detection system. The simulations have been performed with a 3D finite-element Maxwell solver and an efficient mode expansion scheme. They have been compared to measured spectra and show very good agreement.

© 2008 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(020.5580) Atomic and molecular physics : Quantum electrodynamics
(140.3945) Lasers and laser optics : Microcavities
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: September 10, 2007
Manuscript Accepted: October 5, 2007
Published: December 19, 2007

Citation
Friedhard Römer and Bernd Witzigmann, "Spectral and spatial properties of the spontaneous emission enhancement in photonic crystal cavities," J. Opt. Soc. Am. B 25, 31-39 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-1-31


Sort:  Year  |  Journal  |  Reset  

References

  1. E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681-681 (1946). [CrossRef]
  2. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, "Photonic crystals: putting a new twist on light," Nature 386, 143-149 (1997). [CrossRef]
  3. T. Baba, T. Hamano, F. Koyama, and K. Iga, "Spontaneous emission factor of a microcavity DBR surface-emitting laser," IEEE J. Quantum Electron. 27, 1347-1358 (1991). [CrossRef]
  4. M. Francardi, L. Balet, A. Gerardino, C. Monat, C. Zinoni, L. H. Li, B. Alloing, N. L. Thomas, R. Houdré, and A. Fiore, "Quantum dot photonic crystal nanocavities at 1300 nm for telecom-wavelength single-photon source," Phys. Status Solidi C 3, 3693-3696 (2006). [CrossRef]
  5. M. L. Adams, M. Loncar, A. Scherer, and Y. Qiu, "Microfluidic integration of porous photonic crystal nanolasers for chemical sensing," IEEE J. Sel. Areas Commun. 23, 1348-1354 (2005). [CrossRef]
  6. M. Lee and P. M. Fauchet, "Two-dimensional silicon photonic crystal based biosensing platform for protein detection," Opt. Express 15, 4530-4535 (2007). [CrossRef] [PubMed]
  7. P. Alivisatos, "The use of nanocrystals in biological detection," Nat. Biotechnol. 22, 47-52 (2004). [CrossRef] [PubMed]
  8. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998). [CrossRef]
  9. T. D. Happ, I. I. Tartakovskii, V. D. Kulakovskii, J.-P. Reithmaier, M. Kamp, and A. Forchel, "Enhanced light emission of InxGa1−xAs quantum dots in a two-dimensional photonic-crystal defect microcavity," Phys. Rev. B 66, 041303 (2002). [CrossRef]
  10. K. Joulain, R. Carminati, J.-P. Mulet, and J.-J. Greffet, "Definition and measurement of the local density of electromagnetic states close to an interface," Phys. Rev. B 68, 245405 (2003). [CrossRef]
  11. W. Lukosz, "Theory of optical-environment-dependent spontaneous-emission rates for emitters in thin layers," Phys. Rev. B 22, 3030-3038 (1980). [CrossRef]
  12. L. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (IEEE, 1994). [CrossRef]
  13. L.-W. Wang, J. Kim, and A. Zunger, "Electronic structures of [110]-faceted self-assembled pyramidal InAs/GaAs quantum dots," Phys. Rev. B 59, 5678-5687 (1999). [CrossRef]
  14. J.-P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1995). [CrossRef]
  15. F. L. Teixeira and W. C. Chew, "Complex space approach to perfectly matched layers: a review and some new developments," Int. J. Numer. Model. 13, 441-455 (2000). [CrossRef]
  16. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, "Optimization of the Q factor in photonic crystal microcavities," IEEE J. Quantum Electron. 38, 850-856 (2002). [CrossRef]
  17. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214 (2005). [CrossRef] [PubMed]
  18. J. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (Wiley, 2002).
  19. J. C. Nédélec, "A new family of mixed finite elements in R3," Numer. Math. 50, 57-81 (1986). [CrossRef]
  20. F. Römer, B. Witzigmann, O. Chinellato, and P. Arbenz, "Investigation of the Purcell effect in photonic crystal cavities with a 3D finite element Maxwell solver," Opt. Quantum Electron. 39, 341-352 (2007). [CrossRef]
  21. O. Schenk and K. Gärtner, "Solving unsymmetric sparse systems of linear equations with PARDISO," FGCS, Future Gener. Comput. Syst. 20, 475-487 (2004). [CrossRef]
  22. G. H. Golub and C. F. van Loan, Matrix Computations (Johns Hopkins U. Press, 1989).
  23. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003). [CrossRef] [PubMed]
  24. S. Adachi, Properties of Aluminium Gallium Arsenide (IEE, 1993).
  25. M. Shirane, S. Kono, J. Ushida, and S. Ohkouchi, "Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals," J. Appl. Phys. 101, 073107 (2007). [CrossRef]
  26. F. Römer and B. Witzigmann, "Investigation of the optical farfield of photonic crystal microcavities," Proc. SPIE 6480, 64801B (2007). [CrossRef]
  27. D. H. S. Cheng, "On the formulation of the dyadic Green's function in a layered medium," Electromagnetics 6, 171-182 (1986). [CrossRef]
  28. A. Fiore, U. Oesterle, R. P. Stanley, R. Houdré, F. Lelarge, M. Ilegems, P. Borri, W. Langbein, D. Birkedal, J. M. Hvam, M. Cantoni, and F. Bobard, "Structural and electrooptical characteristics of quantum dots emitting at 1.3 μm on gallium arsenide," IEEE J. Quantum Electron. 37, 1050-1058 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited