OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 1 — Jan. 1, 2008
  • pp: 48–53

Compensating power depletion due to stimulated Raman scattering in high-power delivery fiber via spectral inversion

Peng Dong, Xiaosheng Xiao, Yu Tian, Shiming Gao, and Changxi Yang  »View Author Affiliations


JOSA B, Vol. 25, Issue 1, pp. 48-53 (2008)
http://dx.doi.org/10.1364/JOSAB.25.000048


View Full Text Article

Enhanced HTML    Acrobat PDF (114 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a numerical investigation for compensating power depletion caused by stimulated Raman scattering (SRS) in high-power delivery fibers with the spectral-inversion approach. The spectral inversion is realized by four-wave mixing, considering the character of an optical fiber Raman gain profile. The power depletion of the signal by SRS can be effectively compensated using this method. The system parameters for the best compensation are optimized for the delivery of the laser beam with a power of 100 W in a 200 - m -long standard single-mode fiber. The present method can be applied to higher-power delivery systems and longer fibers. The spectral-inversion method is compared with the alternative method to directly filtering Stokes waves for SRS cancellation. The influence of the initial phases of the Stokes waves on the compensating process is also discussed.

© 2008 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.5650) Nonlinear optics : Raman effect
(190.5890) Nonlinear optics : Scattering, stimulated

ToC Category:
Nonlinear Optics

History
Original Manuscript: March 29, 2007
Revised Manuscript: September 7, 2007
Manuscript Accepted: September 16, 2007
Published: December 19, 2007

Citation
Peng Dong, Xiaosheng Xiao, Yu Tian, Shiming Gao, and Changxi Yang, "Compensating power depletion due to stimulated Raman scattering in high-power delivery fiber via spectral inversion," J. Opt. Soc. Am. B 25, 48-53 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-1-48


Sort:  Year  |  Journal  |  Reset  

References

  1. M. N. Islam, Raman Amplifiers for Telecommunications (Springer-Verlag, 2004).
  2. G. P. Agrawal, Nonlinear Fiber Optics and Applications of Nonlinear Fiber Optics, 3rd ed. (Publishing House of Electronics Industry, 2003).
  3. S. Tariq and J. C. Palais, "A computer model of non-dispersion-limited stimulated Raman scattering in optical fiber multiple-channel communications," J. Lightwave Technol. 11, 1914-1924 (1993). [CrossRef]
  4. F. Forghieri, R. W. Tkach, and A. R. Chraplyvy, "Effect of modulation statistics on Raman crosstalk in WDM system," IEEE Photonics Technol. Lett. 7, 101-103 (1995). [CrossRef]
  5. J. Wang, X. Sun, and M. Zhang, "Effect of group velocity dispersion on stimulated Raman crosstalk in multichannel transmission systems," IEEE Photonics Technol. Lett. 10, 540-542 (1998). [CrossRef]
  6. A. R. Chraplyvy and R. W. Tkach, "What is the actual capacity of single-mode fibers in amplified lightwave system," IEEE Photonics Technol. Lett. 5, 666-668 (1993). [CrossRef]
  7. M. E. Marhic, "Cancellation of stimulated-Raman-scattering cross talk in wavelength-division-multiplexed optical communication systems by series or parallel techniques," J. Opt. Soc. Am. B 15, 957-963 (1998). [CrossRef]
  8. A. G. Grandpierre, D. N. Christodoulides, and J. Toulouse, "Theory of stimulated Raman scattering cancellation in wavelength-division-multiplexed systems via spectral inversion," IEEE Photonics Technol. Lett. 11, 1271-1273 (1999). [CrossRef]
  9. H. Yu and K. P. Ho, "Limitation of stimulated Raman scattering cancellation in WDM systems via spectral inversion," IEEE Photonics Technol. Lett. 12, 998-1000 (2000). [CrossRef]
  10. Y. Wang, C. Q. Xu, and H. Po, "Analysis of Raman and thermal effects in kilowatt fiber lasers," Opt. Commun. 242, 487-502 (2004). [CrossRef]
  11. L. A. Zenteno, J. Wang, D. T. Walton, B. A. Ruffin, M. J. Li, S. Gray, A. Crowley, and X. Chen, "Suppression of Raman gain in single-transverse-mode dual-hole assisted fiber," Opt. Express 13, 8921-8926 (2005). [CrossRef] [PubMed]
  12. J. M. Fini, M. D. Mermelstein, M. F. Yan, R. T. Bise, A. D. Yablon, P. W. Wisk, and M. J. Andrejo, "Distributed suppression of stimulated Raman scattering in an Yb-doped filter-fiber amplifier," Opt. Lett. 31, 2550-2552 (2006). [CrossRef] [PubMed]
  13. J. Kim, P. Dupriez, C. Codemard, J. Nilsson, and J. K. Sahu, "Suppression of stimulated Raman scattering in a high power Yb-doped fiber amplifier using a W-type core with fundamental mode cut-off," Opt. Express 14, 5103-5113 (2006). [CrossRef] [PubMed]
  14. R. H. Stolen and E. P. Ippen, "Raman gain in glass optical waveguide," Appl. Phys. Lett. 20, 276-278 (1973). [CrossRef]
  15. R. H. Stolen and C. Lee, "Development of the stimulated Raman spectrum in single-mode silica fibers," J. Opt. Soc. Am. B 1, 652-657 (1984). [CrossRef]
  16. J. M. C. Boggio, J. D. Marconi, and H. L. Fragnito, "Experimental and numerical investigation of the SBS-threshold increase in an optical fiber by applying strain distributions," J. Lightwave Technol. 23, 3808-3814 (2005). [CrossRef]
  17. J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson, and S. N. Knudsen, "Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution," J. Lightwave Technol. 19, 1691-1697 (2001). [CrossRef]
  18. S. K. Korotky, P. B. Hansen, L. Eskildsen, and J. J. Veselka, "Efficient phase modulation scheme for suppressing stimulated Brillouin scattering," in Technical Digest International Conference on Integrated Optics Optical Fiber Communications (IEEE, 2005), Vol. 2, paper WD2-1, pp. 110-111.
  19. H. Lee, "Suppression of stimulated Brillouin scattering in optical fibers using fiber Bragg gratings," Opt. Express 11, 3467-3472 (2003). [CrossRef] [PubMed]
  20. S. W. Allison, G. T. Gillies, D. W. Magnuson, and T. S. Pagano, "Pulsed laser damage to optical fibers," Appl. Opt. 24, 3140-3145 (1985). [CrossRef] [PubMed]
  21. P. D. Drummond and J. F. Corney, "Quantum noise in optical fibers. I. Stochastic equations," J. Opt. Soc. Am. B 18, 139-152 (2001). [CrossRef]
  22. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003). [CrossRef] [PubMed]
  23. G. Cappellini and S. Trillo, "Third-order three-wave mixing in single-mode fibers: exact solutions and spectral instability effects," J. Opt. Soc. Am. B 8, 824-838 (1991). [CrossRef]
  24. K. Inoue and T. Mukai, "Signal wavelength dependence of gain saturation in a fiber optical parametric amplifier," Opt. Lett. 26, 10-12 (2001). [CrossRef]
  25. G. K. Wong, A. Y. H. Chen, S. G. Murdoch, R. Leonhardt, J. D. Harvey, N. Y. Joly, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Continuous-wave tunable optical parametric generation in a photonic-crystal fiber," J. Opt. Soc. Am. B 22, 2505-2511 (2005). [CrossRef]
  26. S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, "Wavelength conversion of spectrum-sliced broadband amplified spontaneous emission light by hybrid four-wave mixing in highly nonlinear, dispersion-shifted fibers," Opt. Express 14, 2873-2879 (2006). [CrossRef] [PubMed]
  27. Y. S. Jang and Y. C. Chung, "Four-wave mixing of incoherent light in a dispersion-shifted fiber using a spectrum-sliced fiber amplifier light source," IEEE Photonics Technol. Lett. 10, 218-220 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited