OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 1 — Jan. 1, 2008
  • pp: 7–14

Comparison of photon counting and analog techniques for the measurement of photon pair generation in a PPLN waveguide

Stefania Castelletto, Ivo Pietro Degiovanni, Valentina Schettini, Tommaso Del Rosso, Giancarlo Margheri, Leonardo Papi, and Stefano Sottini  »View Author Affiliations

JOSA B, Vol. 25, Issue 1, pp. 7-14 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (528 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present two independent measurements of the photon pairs production efficiency (PPPE) at 1572 nm , generated in a noncommercial periodically poled lithium-niobate waveguide fabricated in our laboratory. The first measurement, referred to as “direct” measurement, is performed at the photon-counting level (light power at the level of a few picowatts), exploiting a typical coincidence detection technique and a dedicated statistical model. In this case the measured PPPE is ( 4.1 ± 1.1 ) 10 11   pairs ( s W ) . The same parameter was estimated independently by a well-established “indirect” measurement, based on a difference frequency generation experiment (typical light power level of a few microwatts). This other measurement yields ( 5.0 ± 2.4 ) 10 11   pairs ( s W ) . Despite the large uncertainty of this second measurement, we observe that the two results are in good agreement even considering only the lower uncertainty value. To our knowledge, it is the first realization of a comparison between these two measurement techniques, working at so different light levels.

© 2008 Optical Society of America

OCIS Codes
(030.5260) Coherence and statistical optics : Photon counting
(130.2790) Integrated optics : Guided waves
(130.4310) Integrated optics : Nonlinear
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.5290) Quantum optics : Photon statistics

ToC Category:
Integrated Optics

Original Manuscript: June 14, 2007
Manuscript Accepted: October 11, 2007
Published: December 11, 2007

Stefania Castelletto, Ivo Pietro Degiovanni, Valentina Schettini, Tommaso Del Rosso, Giancarlo Margheri, Leonardo Papi, and Stefano Sottini, "Comparison of photon counting and analog techniques for the measurement of photon pair generation in a PPLN waveguide," J. Opt. Soc. Am. B 25, 7-14 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. D. N. Klyshko, Photons and Nonlinear Optics (Gordon and Breach, 1988).
  2. A. L. Migdall, S. Castelletto, I. P. Degiovanni, and M. L. Rastello, "Intercomparison of a correlated-photon-based method to measure detector quantum efficiency," Appl. Opt. 41, 2914-2922 (2002). [CrossRef] [PubMed]
  3. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Quantum cryptography using entangled photons in energy-time Bell states," Phys. Rev. Lett. 84, 4737-4740 (2000). [CrossRef] [PubMed]
  4. E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001). [CrossRef] [PubMed]
  5. A. Migdall, "Correlated-photon metrology without absolute standards," Phys. Today 52, 41-46 (1999). [CrossRef]
  6. S. V. Polyakov and A. L. Migdall, "High accuracy verification of a correlated-photon-based method for determining photoncounting detection efficiency," Opt. Express 15, 1390-1407 (2007). [CrossRef] [PubMed]
  7. M. Pelton, P. Marsden, M. T. D. Ljunggren, and A. Karlsson, "Bright, single-spatial-mode source of frequency non-degenerate, polarization-entangled photon pairs using periodically poled KTP," Opt. Express 12, 3573-3580 (2004). [CrossRef] [PubMed]
  8. M. A. Albota and E. Dauler, "Single photon detection of degenerate photon pairs at 1.55 μm from a periodically poled lithium niobate downconverter," J. Mod. Opt. 51, 1417-1432 (2004). [CrossRef]
  9. C. E. Kuklevicz, M. Fiorentino, G. Messin, F. N. Wong, and J. H. Shapiro, "High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric downconverter," Phys. Rev. A 69, 013807 (2004). [CrossRef]
  10. J. Soderholm, K. Hirano, S. Mori, S. Inoue, and S. Kurimura, "Analysis of the generation of photon pairs in periodically poled lithium niobate," in Proceedings of the 8th International Symposium on Foundations of Quantum Mechanics in the Light of New Technology (World Scientific, 2006), pp. 46-49.
  11. C. Kurtsiefer, M. Oberparlieter, and H. Weinfurter, "High-efficiency entangled photon pair collection in type-II parametric fluorescence," Phys. Rev. A 64, 023802 (2001). [CrossRef]
  12. F. A. Bovino, P. Varisco, A. M. Colla, G. Castagnoli, G. Di Giuseppe, and A. V. Sergienko, "Effective fiber-coupling of entangled photons for quantum communication," Opt. Commun. 227, 343-348 (2003). [CrossRef]
  13. S. Castelletto, I. P. Degiovanni, V. Schettini, and A. Migdall, "Spatial and spectral mode selection of heralded single photons from pulsed parametric down-conversion," Opt. Express 13, 6709-6722 (2005). [CrossRef] [PubMed]
  14. T. B. Pittmann, B. C. Jacobs, and J. D. Franson, "Heralding single photons from pulsed parametric down-conversion," Opt. Commun. 246, 545-550 (2005). [CrossRef]
  15. K. Sanaka, K. Kawahara, and T. Kunga, "New high-efficiency source of photon pairs for engineering quantum entanglement," Phys. Rev. Lett. 86, 5620-5623 (2001). [CrossRef] [PubMed]
  16. K. Banaszek, A. B. U'Ren, and I. A. Walmsley, "Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides," Opt. Lett. 26, 1367-1369 (2001). [CrossRef]
  17. A. U'Ren, C. Silberhorn, K. Banaszek, and I. Walmsley, "Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks," Phys. Rev. Lett. 93, 093601 (2004). [CrossRef] [PubMed]
  18. S. Tanzilli, H. D. Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. D. Micheli, D. Ostrowsky, and N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Electron. Lett. 37, 26-28 (2001). [CrossRef]
  19. A. Trifonov, A. Zavriyev, V. Denchev, and A. Leverrier, "Improving the performance of quantum key distribution apparatus," J. Mod. Opt. 54, 9-13 (2006).
  20. S. Mori, J. Soderholm, N. Namekata, and S. Inoue, "On the distribution of 1550-nm photon pairs efficiently generated using a periodically poled lithium niobate waveguide," Opt. Commun. 264, 156-162 (2006). [CrossRef]
  21. O. Alibart, S. Tanzilli, D. Ostrowsky, and P. Baldi, "High-performance guided-wave asynchronous heralded single-photon source," Opt. Lett. 30, 1539-1541 (2005). [CrossRef] [PubMed]
  22. I. Avrutsky and A. V. Sergienko, "Design of integrated optical source of twin photons," Phys. Rev. A 71, 033812 (2005). [CrossRef]
  23. J. Chen, K. F. Lee, C. Liang, and P. Kumar, "Fiber-based telecom-band degenerate-frequency source of entangled photon pairs," Opt. Lett. 31, 2798-2800 (2006). [CrossRef] [PubMed]
  24. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, "Linear optical quantum computing," arXiv:quant-ph/0512071 (2006).
  25. P. Baldi, M. Sundheimer, K. E. Hadi, M. P. de Micheli, and D. B. Ostrowsky, "Comparison between difference-frequency generation and parametric fluorescence in quasi-phase-matched lithium niobate stripe waveguides," IEEE J. Sel. Top. Quantum Electron. 2, 385-395 (1996). [CrossRef]
  26. C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiber, and W. Sohler, "Advanced Ti:Er:LiNbO3 waveguide lasers," IEEE J. Sel. Top. Quantum Electron. 6, 101-113 (2000). [CrossRef]
  27. T. Del Rosso, G. Margheri, S. Sottini, S. Trigari, M. De Sario, F. Prudenzano, and D. Grando, "An optical thermometer exploiting periodically poled lithium niobate for monitoring the pantographs of high-speed trains," IEEE Sens. J. 7, 417-425 (2007). [CrossRef]
  28. X. F. Cao, R. V. Ramaswamy, and R. Srivastava, "Characterization of annealed proton exchanged LiNbO3 waveguide for nonlinear frequency conversion," J. Lightwave Technol. 10, 1302-1313 (1992). [CrossRef]
  29. D. Grando, F. Gelli, S. Trigari, and S. Sottini, "Caratterizzazione di guide a scambio protonico su Niobato di Litio polato periodicamente o per mezzo di impulsi elettrici o per Titanio indiffuso" in Proceedings of the Convegno Nazionale sulle Tecniche Fotoniche nelle Telecomunicazioni (Atti di Fotonica2001), pp. 207-201.
  30. S. Castelletto, I. P. Degiovanni, V. Schettini, and A. Migdall, "Optimizing single-photon-source heralding efficiency and detection efficiency metrology at 1550 nm using periodically poled lithium niobate," Metrologia 43, S56-S60 (2006). [CrossRef]
  31. id 200 Single-Photon Detector Module, Application Note, id Quantique, Switzerland (2004).
  32. G. Hocker and W. K. Burns, "Mode dispersion in diffused channel waveguides by effective index method," Appl. Opt. 16, 113-118 (1977). [CrossRef] [PubMed]
  33. Guide to the Expression of Uncertainty in Measurement (International Organization for Standardization, 1995).
  34. E. Kapon and R. Bath, "Low-loss single-mode GaAs/AlGaAs optical waveguides grown by organometallic vapor phase epitaxy," Appl. Phys. Lett. 50, 1628-1630 (1987). [CrossRef]
  35. T. Del Rosso, "Dispositivi in LiNbO3 periodicamente polarizzato per applicazioni alla sensoristica ed alle telecomunicazioni," Ph.D. thesis (U. Florence, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited