OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 1 — Jan. 1, 2008
  • pp: 83–87

Nonparaxial propagation of vectorial hollow Gaussian beams

Degang Deng, Hua Yu, Shiqing Xu, Guanglei Tian, and Zhengxiu Fan  »View Author Affiliations


JOSA B, Vol. 25, Issue 1, pp. 83-87 (2008)
http://dx.doi.org/10.1364/JOSAB.25.000083


View Full Text Article

Enhanced HTML    Acrobat PDF (488 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Based on the vectorial Raleigh–Sommerfeld diffraction integral, the nonparaxial propagation of vectorial hollow Gaussian beams (HGBs) in free space is studied. The far-field and paraxial cases can be treated as special cases of our general results. The typical numerical examples are given to illustrate our analytical results and comparisons between the different approximations present that the f parameter still plays an important role in determining the nonparaxiality of vectorial diffracted HGBs.

© 2008 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(140.3300) Lasers and laser optics : Laser beam shaping
(350.5500) Other areas of optics : Propagation

ToC Category:
Diffraction and Gratings

History
Original Manuscript: July 12, 2007
Revised Manuscript: October 22, 2007
Manuscript Accepted: October 22, 2007
Published: December 21, 2007

Citation
Degang Deng, Hua Yu, Shiqing Xu, Guanglei Tian, and Zhengxiu Fan, "Nonparaxial propagation of vectorial hollow Gaussian beams," J. Opt. Soc. Am. B 25, 83-87 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-1-83


Sort:  Year  |  Journal  |  Reset  

References

  1. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78, 4713-4716 (1997). [CrossRef]
  2. Yu. B. Ovchinnikov, I. Manek, and R. Grimm, "Surface trap for Cs atoms based on evanescent-wave cooling," Phys. Rev. Lett. 79, 2225-2228 (1997). [CrossRef]
  3. Y. Song, D. Milam, and W. T. Hill, "Long, narrow all-light atom guide," Opt. Lett. 24, 1805-1807 (1999). [CrossRef]
  4. H. Ito, K. Sakaki, W. Jhe, and M. Ohtsu, "Atomic funnel with evanescent light," Phys. Rev. A 56, 712-718 (1997). [CrossRef]
  5. W. L. Power, L. Allen, M. Babiker, and V. E. Lembessis, "Atomic motion in light beams possessing orbital angular momentum," Phys. Rev. A 52, 479-488 (1995). [CrossRef] [PubMed]
  6. H. S. Lee, B. W. Atewart, K. Choi, and H. Fenichel, "Holographic nondiverging hollow beam," Phys. Rev. A 49, 4922-4927 (1994). [CrossRef] [PubMed]
  7. Z. Liu, H. Zhao, J. Liu, J. Lin, M. A. Ahmad, and S. Liu, "Generation of hollow Gaussian beams by spatial filtering," Opt. Lett. 32, 2076-2078 (2007). [CrossRef] [PubMed]
  8. P. Liu and B. Lu, "Phase singularities of the transverse field component of high numerical aperture dark-hollow Gaussian beams in the focal region," Opt. Commun. 272, 1-8 (2007). [CrossRef]
  9. Y. Cai, X. Lu, and Q. Lin, "Hollow Gaussian beam and its propagation," Opt. Lett. 28, 1084-1086 (2003). [CrossRef] [PubMed]
  10. Y. Cai and Q. Lin, "Hollow elliptical Gaussian beam and its propagation through aligned and misaligned paraxial optical systems," J. Opt. Soc. Am. A 21, 1058-1065 (2004). [CrossRef]
  11. Y. Cai and S. He, "Propagation of hollow Gaussian beams through apertured paraxial optical systems," J. Opt. Soc. Am. A 23, 1410-1418 (2006). [CrossRef]
  12. Y. Cai and L. Zhang, "Coherent and partially coherent dark hollow beams with rectangular symmetry and paraxial propagation properties," J. Opt. Soc. Am. B 23, 1398-1407 (2006). [CrossRef]
  13. Y. Cai and L. Zhang, "Propagation of a hollow Gaussian beam through a paraxial misaligned optical system," Opt. Commun. 265, 607-615 (2006). [CrossRef]
  14. Y. Cai, C. Chen, and F. Wang, "Modified hollow Gaussian beam and its paraxial propagation," Opt. Commun. 278, 34-41 (2007). [CrossRef]
  15. Y. Cai and S. He, "Propagation of various dark hollow beams in a turbulent atmosphere," Opt. Express 14, 1353-1367 (2006). [CrossRef] [PubMed]
  16. C. Zheng, "Fractional Fourier transform for a hollow Gaussian beam," Phys. Lett. A 355, 156-161 (2006). [CrossRef]
  17. D. Deng, X. Fu, C. Wei, J. Shao, and Z. Fan, "Far-field intensity distribution and M2 factor of hollow Gaussian beams," Appl. Opt. 44, 7187-7190 (2005). [CrossRef] [PubMed]
  18. D. Deng, "Generalized M2-factor of hollow Gaussian beams through a hard-edge circular aperture," Phys. Lett. A 341, 352-356 (2005). [CrossRef]
  19. B. Lü and K. Duan, "Nonparaxial propagation of vectorial Gaussian beams diffracted at a circular aperture," Opt. Lett. 28, 2440-2442 (2003). [CrossRef] [PubMed]
  20. D. Deng, "Nonparaxial propagation of radially polarized light beams," J. Opt. Soc. Am. A 23, 1228-1234 (2006). [CrossRef]
  21. R. Borghi and M. Santarsiero, "Nonparaxial propagation of spirally polarized optical beams," J. Opt. Soc. Am. A 21, 2029-2037 (2004). [CrossRef]
  22. Z. Gao and B. Lu, "Nonparaxial dark-hollow Gaussian beams," Chin. Phys. Lett. 23, 106-109 (2006). [CrossRef]
  23. J. D. Joannopoulis, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, 1995).
  24. R. K. Luneberg, Mathematical Theory of Optics (U. California Press, 1964).
  25. A. Erdelyi, W. Magnus, and F. Oberhettinger, Tables of Integral Transforms (McGraw-Hill, 1953).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited