OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 1 — Jan. 1, 2008
  • pp: 88–97

Inverse design of dispersion compensating optical fiber using topology optimization

Jesper Riishede and Ole Sigmund  »View Author Affiliations

JOSA B, Vol. 25, Issue 1, pp. 88-97 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (371 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a new numerical method for designing dispersion compensating optical fibers. The method is based on the solving of the Helmholtz wave equation with a finite-difference modesolver and uses topology optimization combined with a regularization filter for the design of the refractive index profile. We illustrate the applicability of the proposed method through numerical examples and, furthermore, address the problem of keeping the optimized design single moded by including a singlemode constraint in the optimization problem.

© 2008 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.4430) General : Numerical approximation and analysis
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2430) Fiber optics and optical communications : Fibers, single-mode

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 21, 2007
Manuscript Accepted: October 14, 2007
Published: December 21, 2007

Jesper Riishede and Ole Sigmund, "Inverse design of dispersion compensating optical fiber using topology optimization," J. Opt. Soc. Am. B 25, 88-97 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. L. Grüner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, "Dispersion compensating fibers," Opt. Fiber Technol. 6, 164-180 (2000). [CrossRef]
  2. G. Agrawal, Fiber-Optic Communication Systems, 2nd ed. (Wiley, 1997).
  3. A. Bjarklev, T. Rasmussen, O. Lumholt, K. Rottwitt, and M. Helmer, "Optimal design of single-cladded dispersion-compensating optical fibers," Opt. Lett. 19, 457-459 (1994). [CrossRef] [PubMed]
  4. J. L. Auguste, J. M. Blondy, J. Maury, J. Marcou, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, "Conception, realization, and characterization of a very high negative chromatic dispersion fiber," Opt. Fiber Technol. 8, 89-105 (2002). [CrossRef]
  5. F. Gerome, J.-L. Auguste, J. Maury, J.-M. Blondy, and J. Marcou, "Theoretical and experimental analysis of a chromatic dispersion compensating module using a dual concentric core fiber," J. Lightwave Technol. 24, 442-448 (2006). [CrossRef]
  6. H. Subbaraman, T. Ling, Y. Jiang, M. Y. Chen, P. Cao, and R. T. Chen, "Design of a broadband highly dispersive pure silica photonic crystal fiber," Appl. Opt. 46, 3263-3268 (2007). [CrossRef] [PubMed]
  7. M. Bendsøe and N. Kikuchi, "Generating optimal topologies in structural design using a homogenization method," Comput. Methods Appl. Mech. Eng. 71, 197-224 (1988). [CrossRef]
  8. M. Bendsøe and O. Sigmund, Topology Optimization: Theory, Methods and Applications (Springer, 2003).
  9. U. D. Larsen, O. Sigmund, and S. Bouwstra, "Design and fabrication of compliant micromechanisms and structures with negative Poisson's ratio," J. Microelectromech. Syst. 6, 99-106 (1997). [CrossRef]
  10. T. Borrvall and J. Petersson, "Topology optimisation of fluids in Stokes flow," Int. J. Numer. Methods Fluids 41, 77-107 (2003). [CrossRef]
  11. J. S. Jensen and O. Sigmund, "Systematic design of photonic crystal structures using topology optimisation: low-loss waveguide bends," Appl. Phys. Lett. 84, 2022-2024 (2004). [CrossRef]
  12. J. S. Jensen and O. Sigmund, "Topology optimization of photonic crystal structures: A high bandwidth low loss T-junction waveguide," J. Opt. Soc. Am. B 22, 69-71 (2005). [CrossRef]
  13. P. I. Borel, A. Harpøth, L. H. Frandsen, M. Kristensen, J. S. Jensen, P. Shi, and O. Sigmund, "Topology optimization and fabrication of photonic crystal structures," Opt. Express 12, 1996-2001 (2004). [CrossRef] [PubMed]
  14. A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers (Kluwer, 2003). [CrossRef]
  15. T. Fujisawa, K. Saitoh, K. Wada, and M. Koshiba, "Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation," Opt. Express 14, 893-900 (2006). [CrossRef] [PubMed]
  16. F. Poletti, V. Finazzi, T. M. Monroe, N. G. R. Broderick, V. Tse, and D. J. Richardson, "Inverse design and fabrication tolerances of ultraflattened dispersion holey fibers," Opt. Express 13, 3728-3736 (2005). [CrossRef] [PubMed]
  17. O. Sigmund and J. Petersson, "Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima," Struct. Optim. 16, 68-75 (1998). [CrossRef]
  18. J. Riishede, N. A. Mortensen, and J. Lægsgaard, "A poor man's approach to modelling microstructured optical fibers," J. Opt. A, Pure Appl. Opt. 13, 534-538 (2003). [CrossRef]
  19. T. E. Bruns and D. A. Tortorelli, "Topology optimization of non-linear elastic structures and compliant mechanisms," Comput. Methods Appl. Mech. Eng. 190, 3443-3459 (2001). [CrossRef]
  20. B. Bourdin, "Filters in topology optimization," Int. J. Numer. Methods Eng. 50, 2143-2158 (2001). [CrossRef]
  21. K. Svanberg, "The method of moving assymptotes-a new method for structural optimization," Int. J. Numer. Methods Eng. 24, 359-373 (1987). [CrossRef]
  22. www.corning. com/opticalfiber
  23. A. P. Seyranian, E. Lund, and N. Olhoff, "Multiple eigenvalues in structural optimization problems," Struct. Optim. 8, 207-227 (1994). [CrossRef]
  24. J. S. Jensen and N. L. Pedersen, "On maximal eigenfrequency separation in two-material structures: the 1D and 2D scalar cases," J. Sound Vib. 289, 967-986 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited