OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 10 — Oct. 1, 2008
  • pp: 1568–1575

Mode quasi-degeneracy and beam reflection in the total-internal-reflection optical waveguide switch

Hui Yu, Xiaoqing Jiang, Jianyi Yang, Jiate Zhao, Wei Qi, and Minghua Wang  »View Author Affiliations

JOSA B, Vol. 25, Issue 10, pp. 1568-1575 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (998 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the beam reflection mechanism in a bounded space, which is applied in the practical total-internal-reflection (TIR) optical waveguide switch. Due to the confinement of the waveguide, the beam reflection within the TIR switch is completely different from that in free space. Its essence is the quasi-degeneracy between the even and the odd modes in the reflection region. Since different modes require different refractive index decreases to reach the quasi-degenerate state, we reduce the electrode power by controlling the mode excitation in the reflection region. Several guidelines are proposed for designing the TIR switch.

© 2008 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(130.0130) Integrated optics : Integrated optics
(130.2790) Integrated optics : Guided waves

ToC Category:
Integrated Optics

Original Manuscript: May 13, 2008
Revised Manuscript: July 10, 2008
Manuscript Accepted: July 10, 2008
Published: September 2, 2008

Hui Yu, Xiaoqing Jiang, Jianyi Yang, Jiate Zhao, Wei Qi, and Minghua Wang, "Mode quasi-degeneracy and beam reflection in the total-internal-reflection optical waveguide switch," J. Opt. Soc. Am. B 25, 1568-1575 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. S. Tsai, B. Kim, and F. R. Elakkari, “Optical channel waveguides switch and coupler using total internal reflection,” IEEE J. Quantum Electron. 14, 513-517 (1978). [CrossRef]
  2. C. Z. Zhao, A. H. Chen, E. K. Liu, and G. Z. Li, “Silicon-on-insulator asymmetric optical switch based on total internal reflection,” IEEE Photon. Technol. Lett. 9, 1113-1115 (1997). [CrossRef]
  3. K. R. Oh, K. S. Park, D. K. Oh, H. M. Kim, H. M. Park, and K. Lee, “A very low operation current InGaAsP/InP total internal reflection optical switch using p/n/p/n current blocking layers,” IEEE Photon. Technol. Lett. 6, 65-67 (1994).
  4. Y. Gao, X. Liu, G. Li, and E. Liu, “Si1−xGex/Si asymmetric 2×2 electro-optical switch of total internal reflection type,” Appl. Phys. Lett. 67, 3379-3380 (1995). [CrossRef]
  5. B. Li, G. Li, E. Liu, Z. Jiang, C. Pei, and X. Wang, “1.55 μm reflection-type optical waveguide switch based on SiGe/Si plasma dispersion effect,” Appl. Phys. Lett. 75, 1-3 (1999). [CrossRef]
  6. F. Ito, M. Matsuura, and T. Tanifuji, “A carrier injection type optical switch in GaAs using free carrier plasma dispersion with wavelength range from 1.06to1.55μm,” IEEE J. Quantum Electron. 25, 1677-1681 (1989). [CrossRef]
  7. A. Zhang, K. T. Chan, M. S. Demokan, W. C. Chan, C. H. Chan, H. S. Kwok, and H. P. Chan, “Integrated liquid crystal optical switch based on total internal reflection,” Appl. Phys. Lett. 86, 211108 (2005). [CrossRef]
  8. J. Y. Yang, Q. Zhou, and R. T. Chen, “Polyimide-waveguide-based thermal optical switch using total-internal-reflection effect,” Appl. Phys. Lett. 81, 2947-2949 (2002). [CrossRef]
  9. X. L. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “Polarization-independent all-wave polymer-based TIR thermooptic switch,” J. Lightwave Technol. 24, 1558-1565 (2006). [CrossRef]
  10. S. K. Sheem, “Total internal reflection integrated-optics switch: a theoretical evalution,” Appl. Opt. 17, 3679-3687 (1978). [CrossRef] [PubMed]
  11. J. Nayyer, Y. Suematsu, and K. Shimomura, “Analysis of reflection-type optical switches with intersecting waveguides,” J. Lightwave Technol. 6, 1146-1152 (1988). [CrossRef]
  12. K. Shimomura, Y. Suematsu, and S. Arai, “Analysis of semiconductor intersectional waveguide optical switch modular,” IEEE J. Quantum Electron. 26, 883-892 (1990). [CrossRef]
  13. H. Yu, X. Q. Jiang, J. Y. Yang, W. Qi, and M. H. Wang, “Analytical model for the grazing reflection of a narrow beam,” Opt. Lett. 31, 2747-2749 (2006). [CrossRef] [PubMed]
  14. H. H. Hanza, J. Nayyer, and S. S. Naini, “Extinction ratios and scattering losses of optical intersecting-waveguide switches with curved electrodes,” J. Lightwave Technol. 12, 1475-1481 (1994).
  15. P. Gerard, P. Benech, D. Khalil, R. Rimet, and S. Tedjini, “Towards a full vectorial and model technique for the analysis of integrated optics structures: the radiation spectrum method,” Opt. Commun. 140, 128-145 (1997). [CrossRef]
  16. H. Ding, P. Gerard, and P. Benech, “Radiation modes of lossless multilayer dielectric waveguides,” IEEE J. Quantum Electron. 31, 411-416 (1995). [CrossRef]
  17. S. L. Lee, S. L. Mui, and L. A. Coldren, “Explict formulas of normalized radiation modes in multilayer waveguides,” J. Lightwave Technol. 12, 2073-2079 (1994).
  18. V. Ramaswamy and P. G. Suchoski, “Power loss at a step discontinuity in an asymmetrical dielectric slab waveguide,” J. Opt. Soc. Am. A 1, 754-759 (1984). [CrossRef]
  19. M. Oz and R. R. Krchnavek, “Power loss analysis at a step discontinuity of a multimode optical waveguide,” J. Lightwave Technol. 16, 2451-2457 (1998). [CrossRef]
  20. A. Neyer, “Operation mechanism of electrooptic multimode X-switches,” IEEE J. Quantum Electron. 20, 999-1002 (1984). [CrossRef]
  21. A. Yariv, Optical Electronics in Modern Communications (Oxford U. Press, 1997), Chap. 13.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited