OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 10 — Oct. 1, 2008
  • pp: 1585–1592

Nonlinear microscopy of localized field enhancements in fractal shaped periodic metal nanostructures

Jonas Beermann, Andrey Evlyukhin, Alexandra Boltasseva, and Sergey I. Bozhevolnyi  »View Author Affiliations


JOSA B, Vol. 25, Issue 10, pp. 1585-1592 (2008)
http://dx.doi.org/10.1364/JOSAB.25.001585


View Full Text Article

Enhanced HTML    Acrobat PDF (652 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Fractal shaped periodic nanostructures formed with a 100 nm period square lattice of gold nanoparticles placed on a gold film are characterized using far-field nonlinear scanning optical microscopy, in which two-photon photoluminescence (TPL) excited with a strongly focused femtosecond laser beam (in the wavelength range of 730 790 nm ) is detected. TPL images obtained for all wavelengths in the laser range feature diffraction-limited ( 0.6 μ m ) bright spots corresponding to intensity enhancements of up to 170 , whose positions are dictated by the incident light wavelength and polarization. We relate the observed TPL enhancements to constructive interference of surface plasmon polaritons partially reflected inside the structure boundaries and support the analysis with numerical simulations using the Green dyadic field propagator.

© 2008 Optical Society of America

OCIS Codes
(180.5810) Microscopy : Scanning microscopy
(240.4350) Optics at surfaces : Nonlinear optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons
(290.4210) Scattering : Multiple scattering

ToC Category:
Optics at Surfaces

History
Original Manuscript: July 10, 2008
Manuscript Accepted: July 13, 2008
Published: September 8, 2008

Virtual Issues
Vol. 3, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Jonas Beermann, Andrey Evlyukhin, Alexandra Boltasseva, and Sergey I. Bozhevolnyi, "Nonlinear microscopy of localized field enhancements in fractal shaped periodic metal nanostructures," J. Opt. Soc. Am. B 25, 1585-1592 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-10-1585


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. M. Markel and T. F. George, Optics of Nanostructured Materials (Wiley, 2001).
  2. G. T. Boyd, Th. Rasing, J. R. R. Leite, and Y. R. Shen, “Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation,” Phys. Rev. B 30, 519-526 (1984), and references therein. [CrossRef]
  3. E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014-4017 (1999). [CrossRef]
  4. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter , 14, R597-R624 (2002). [CrossRef]
  5. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005). [CrossRef] [PubMed]
  6. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607-1609 (2005). [CrossRef] [PubMed]
  7. A. Hohenau, J. R. Krenn, S. G. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75, 085104 (2007). [CrossRef]
  8. A. K. Sarychev and V. M. Shalaev, “Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites,” Phys. Rep. 335, 275-371 (2000). [CrossRef]
  9. M. I. Stockman, “Local fields' localization and chaos and nonlinear-optical enhancement in clusters and composites,” in Optics of Nanostructured Materials (Wiley, 2001), p. 313, and references therein.
  10. S. I. Bozhevolnyi, J. Beermann, and V. Coello, “Direct observation of localized second-harmonic enhancement in random metal nanostructures,” Phys. Rev. Lett. 90, 197403 (2003). [CrossRef] [PubMed]
  11. C. Even, S. Russ, V. Repain, P. Pieranski, and B. Sapoval, “Localizations in fractal drums: an experimental study,” Phys. Rev. Lett. 83, 726-729 (1999). [CrossRef]
  12. A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22, 185-187 (1969). [CrossRef]
  13. G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B 33, 7923-7936 (1986). [CrossRef]
  14. M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003). [CrossRef]
  15. A. Bouhelier, M. R. Beversluis, and L. Novotny, “Characterization of nanoplasmonic structures by locally excited photoluminescence,” Appl. Phys. Lett. 83, 5041-5043 (2003). [CrossRef]
  16. J. Beermann, I. P. Radko, A. Boltasseva, and S. I. Bozhevolnyi, “Localized field enhancements in fractal shaped periodic metal nanostructures,” Opt. Express 15, 15234-15241 (2007). [CrossRef] [PubMed]
  17. K. Falconer, Fractal Geometry: Mathematical Foundations and Application, 2nd ed., (Wiley, 2003). [CrossRef]
  18. J. Beermann and S. I. Bozhevolnyi, “Microscopy of localized second-harmonic enhancement in random metal nanostructures,” Phys. Rev. B 69, 155429 (2004). [CrossRef]
  19. J. Beermann, V. Coello, and S. I. Bozhevolnyi, “Modeling of nonlinear microscopy of localized field enhancements in random metal nanostructures,” Phys. Rev. B 73, 115408 (2006). [CrossRef]
  20. O. Keller, M. Xiao, and S. I. Bozhevolnyi, “Configurational resonances in optical near-field microscopy: a rigorous point-dipole approach,” Surf. Sci. 280, 217-230 (1993). [CrossRef]
  21. A. B. Evlyukhin and S. I. Bozhevolnyi, “Point-dipole approximation for surface plasmon polariton scattering: Implications and limitations,” Phys. Rev. B 71, 134304 (2005). [CrossRef]
  22. T. Søndergaard and S. I. Bozhevolnyi, “Vectorial model for multiple scattering by surface nanoparticles via surface polariton-to-polariton interactions,” Phys. Rev. B 67, 165405 (2003). [CrossRef]
  23. L. Novotny, B. Hecht, and D. W. Pohl, “Interference of locally excited surface plasmons,” J. Appl. Phys. 81, 1708-1714 (1997). [CrossRef]
  24. J. E. Sansonetti and J. K. Furdyna, “Depolarization effects in array of spheres,” Phys. Rev. B 22, 2866-2874 (1980). [CrossRef]
  25. V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. I. Linear optical properties,” Phys. Rev. B 53, 2425-2436 (1996). [CrossRef]
  26. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848-872 (1988). [CrossRef]
  27. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705-714 (1973). [CrossRef]
  28. E. Palik, Handbook of Optical Constant of Solids (Academic, 1985).
  29. I. P. Radko, S. I. Bozhevolnyi, A. B. Evlyukhin, and A. Boltasseva, “Surface plasmon polariton beam focusing with parabolic nanoparticle chains,” Opt. Express 15, 6576-6582 (2007). [CrossRef] [PubMed]
  30. S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, “Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing,” Appl. Phys. Lett. 86, 071103 (2005). [CrossRef]
  31. T. Søndergaard, S. I. Bozhevolnyi, and A. Boltasseva, “Theoretical analysis of ridge gratings for long-range surface plasmon polaritons,” Phys. Rev. B 73, 045320 (2006). [CrossRef]
  32. A. Hohenau, J. R. Krenn, J. Beermann, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, and F. Garcia-Vidal, “Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: experiment and theory,” Phys. Rev. B 73, 155404 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited