OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 10 — Oct. 1, 2008
  • pp: 1602–1615

Optical transparency and silica network structure in cross-linked natural rubber as revealed by spectroscopic and three-dimensional transmission electron microscopy techniques

Atsushi Kato, Yuko Ikeda, Yuki Kasahara, Junichi Shimanuki, Toshiya Suda, Toshinori Hasegawa, Hisahiro Sawabe, and Shinzo Kohjiya  »View Author Affiliations

JOSA B, Vol. 25, Issue 10, pp. 1602-1615 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (2058 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Through the study of particulate-silica-filled cross-linked natural rubber, an optical characteristic phenomenon involving a transition from transparency to opacity and reentry to transparency with an increase of silica loading is reported and examined using ultraviolet/visible spectroscopy and haze and diffusion transmittance measurements. Additionally, three-dimensional transmission electron microscopy observation and volume resistivity measurements reveal that the silica is in a networklike structure in the rubbery matrix. Combining these experimental results with a few theoretical considerations, the characteristic phenomenon is estimated to originate from the optical multiple scattering due to isolated chains of silica, which are present in the networklike structure of silica, but one end of which is not connected to the networks even after the percolated silica network is formed.

© 2008 Optical Society of America

OCIS Codes
(160.0160) Materials : Materials
(160.2750) Materials : Glass and other amorphous materials
(180.0180) Microscopy : Microscopy
(180.6900) Microscopy : Three-dimensional microscopy

ToC Category:

Original Manuscript: March 4, 2008
Revised Manuscript: July 2, 2008
Manuscript Accepted: July 15, 2008
Published: September 10, 2008

Atsushi Kato, Yuko Ikeda, Yuki Kasahara, Junichi Shimanuki, Toshiya Suda, Toshinori Hasegawa, Hisahiro Sawabe, and Shinzo Kohjiya, "Optical transparency and silica network structure in cross-linked natural rubber as revealed by spectroscopic and three-dimensional transmission electron microscopy techniques," J. Opt. Soc. Am. B 25, 1602-1615 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R.P.Feynman, R.B.Leighton, and M.L.Sands, eds., Feynman Physics II, Light, Heat and Waves (translated by K. Tomiyama into Japanese, Iwanami Shoten, 2002).
  2. H.Tokumaru, ed., Our Interaction with Nature through Light and Electromagnetic Fields (Morikita Shuppan, 2000).
  3. H. C. Van de Hulst, Light Scattering by Small Particles (Wiley, 1957).
  4. M. Kerker, The Scattering of Light and Other Electronmagnetic Radiation (Academic, 1969).
  5. G.H.Meeten, ed., Optical Properties of Polymers (Elsevier, 1986).
  6. S. Schelm and G. B. Smith, “Tuning the surface-plasmon resonance in nanoparticles for glazing application,” J. Appl. Phys. 97, 124314 (2005). [CrossRef]
  7. T. Naganuma, H. Iba, and Y. Kagawa, “Optothermal properties of glass particle-dispersed epoxy matrix composite,” J. Mater. Sci. Lett. 18, 1587-1589 (1999). [CrossRef]
  8. Y. Kagawa and H. Iba, “Optically transparent composites,” Mater. J. 39, 137-143 (2000). [CrossRef]
  9. Y.-Q. Li, S.-Y. Fu, and Y.-W. Mai, “Preparation and characterization of transparent ZnO/epoxy nanocomposites with high-UV shielding efficiency,” Polymer 47, 2127-2133 (2006). [CrossRef]
  10. K. Haraguchi, H.-J. Li, K. Matsuda, T. Takehisa, and E. Elliot, “Mechanism of forming organic/inorganic network structures during in-situ free-radical polymerization in PNIPA-clay nanocomposite hydrogels,” Macromolecules 38, 3482-3490 (2005). [CrossRef]
  11. S. Kohjiya, K. Maeda, S. Yamashita, and Y. Shibata, “Chemical modification of silicone elastomers for optics,” J. Mater. Sci. 25, 3368-3374 (1990). [CrossRef]
  12. Y. Ikeda and S. Kohjiya, “Reinforcement of general-purpose grade rubbers by silica generated in situ,” Rubber Chem. Technol. 73, 534-550 (2000). [CrossRef]
  13. Y. Ikeda and Y. Kameda, “Preparation of 'green' composites by the sol-gel process: in situ silica filled natural rubber,” J. Sol-Gel Sci. Technol. 31, 137-142 (2004). [CrossRef]
  14. S. Poompradub, S. Kohjiya, and Y. Ikeda, “Natural rubber/in situ silica nanocomposite of a high silica content,” Chem. Lett. 34, 672-673 (2005). [CrossRef]
  15. Y. Ikeda, Y. Yasuda, S. Yamamoto, and Y. Morita, “Study on two-dimensional small-angle x-ray scattering of in situ silica filled nanocomposite elastomer during deformation,” J. Appl. Crystallogr. 40, s549-s552 (2007). [CrossRef]
  16. Y. Ikeda, A. Kato, J. Shimanuki, and S. Kohjiya, “Nano-structural observation of in situ silica in natural rubber matrix by three dimensional transmission electron microscopy,” Macromol. Rapid Commun. 25, 1186-1190 (2004). [CrossRef]
  17. S. Kohjiya, A. Kato, J. Shimanuki, and Y. Ikeda, “Three-dimensional nano-structure of in situ silica in natural rubber as revealed by 3D-TEM/electron tomography,” Polymer 46, 4440-4446 (2005). [CrossRef]
  18. A. Kato, S. Kohjiya, and Y. Ikeda, “Nanostructure in traditional composites of natural rubber and reinforcing silica,” Rubber Chem. Technol. 80, 690-700 (2007). [CrossRef]
  19. J.Frank ed., Electron Tomography: Three-Dimensional Imaging with the Transmission Electron Microscope (Plenum, 1992).
  20. S. Kohjiya, A. Kato, J. Shimanuki, T. Hasegawa, and Y. Ikeda, “Nano-structural observation of carbon black dispersion in natural rubber matrix by three-dimensional transmission electron microscopy,” J. Mater. Sci. Lett. 40, 2553-2555 (2005).
  21. S. Kohjiya, A. Kato, T. Suda, J. Shimanuki, and Y. Ikeda, “Visualisation of carbon black networks in rubbery matrix by 3D-TEM image,” Polymer 47, 3298-3301 (2006). [CrossRef]
  22. Y. Ikeda, A. Kato, J. Shimanuki, S. Kohjiya, M. Tosaka, S. Poompradub, S. Toki, and B. S. Hsiao, “Nano-structural elucidation in carbon black loaded NR vulcanizate by 3D-TEM and in situ WAXD measurements,” Rubber Chem. Technol. 80, 251-264 (2007). [CrossRef]
  23. S. Kohjiya, A. Kato, and Y. Ikeda, “Visualization of nano-filler dispersion and morphology in rubbery matrix by 3D-TEM,” in Current Topics on Elastomers Research, 2008, A.K.Bhomick, ed. (CRC Press, 2008), Chap. 19.
  24. A. Kato, J. Shimanuki, S. Kohjiya, and Y. Ikeda, “Three-dimensional morphology of carbon black in NR vulcanizates as revealed by 3D-TEM and dielectric measurements,” Rubber Chem. Technol. 79, 653-673 (2006). [CrossRef]
  25. K.Miyasaka, ed., Dictionary of Plastics (Asakura Shoten, 1992).
  26. H.E.Rose, ed., The Measurement of Particle Size in Very Fine Powders (Constable & Co. Ltd., 1954).
  27. V. P. Kandidov, V. O. Milisin, A. V. Bykov, and A. V. Priezzhev, “Application of corpuscular and wave Monte-Carlo method in optics of dipersive media,” Quantum Electron. 36, 1003-1008 (2006). [CrossRef]
  28. Department of Petrochemical Technology and Planning of JSR Co., ed., JSR Handbook (JSR Co., 1977).
  29. T. Akasaki and T. Fukunaga, “Characteristic and application of silica provided by gel method,” Tosoh. Res. Technol. Rev. 45, 65-69 (2001).
  30. M. Nakamura, H. Yoden, H. Yokogawa, T. Yamaki, K. Takahama, and N. Tanio, “Refractive index prediction of optical cross-linked polymer,” Polymer Preprints, Japan 57, 1348 (2008).
  31. The Boulder Laboratory for 3-Dimensional Electron Microscopy of Cells and Regents of the University of Colorado, “The IMOD Home Page,” http://bio3d.colorado.edu/imod/.
  32. Mercury Visualization Sciences, “Visualization Software,” http://www.tgs.com/.
  33. J.-B.Donnet, R.-C.Bansal, and M.-J.Wang, eds., Carbon Black Science and Technology, Second Edition: Revised and Expanded (Marcel Dekker, 1993).
  34. T. Nishi, “Effect of solvent and carbon black species on the rubber-carbon black interactions studied by pulsed NMR,” J. Polym. Sci., Polym. Phys. Ed. 12, 685-691 (1974). [CrossRef]
  35. G. Heinrich and M. Kluppel, “The role of polymer-filler-interphase in reinforcement of elastomers,” Kautsch. Gummi Kunstst. 57, 452-454 (2004).
  36. M. Song, A. Ansarifar, R. Nijhawan, and T. Nanapoolsin, “Reinforcing effect of silica and silane fillers on the properties of some natural rubber vulcanizates,” Rubber Chem. Technol. 76, 1290-1310 (2003).
  37. S. Kohjiya and S. Yamashita, “Moisture cure and related processes of synthetic and natural rubber,” J. Appl. Polym. Sci. 50, 213-221 (1992). [CrossRef]
  38. W. Zhang and A. I. Leonov, “IGC study of filler-filler and filler-rubber interaction in silica-filled compounds,” J. Appl. Polym. Sci. 81, 2517-2530 (2001). [CrossRef]
  39. N. He, S. Ge, G. Yan, C. Hu, and M. Gu, “Investigation on the mechanism of the photoluminescence of MCM-41,” Mater. Res. Bull. 39, 1931-1937 (2004). [CrossRef]
  40. R. Kaijou, M. Ito, and S. Ono, “Filler gel and rubber gel in silica-filled rubber systems,” J. Soc. Rubber Ind., Japan (in Japanese) 77, 375-381 (2004). [CrossRef]
  41. P. Yuan, D. Yang, Z. Lin, H. He, X. Wen, L. Wang, and F. Den, “Influences of pretreatment temperature on the surface silylation of diatomaceous amorphous silica with trimethylchlorosilane,” J. Non-Cryst. Solids 352, 3762-3771 (2006). [CrossRef]
  42. K. Ishii and T. Iwai, “Measurement of fine particle aggregates by using corpuscle the correlation function of time,” J. Electron. Research (in Japanese) 7, 1-3 (1999).
  43. S. Miyazaki, H. Endo, T. Karino, K. Haraguchi, and M. Shibayama, “Gelation mechanism of poly(N-isopropylacrylamide)-clay nanocomposite gels,” Macromolecules 40, 4287-4295 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited