OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 10 — Oct. 1, 2008
  • pp: 1632–1638

Low-frequency-noise diode laser for atom interferometry

Tatiana Nazarova, Christian Lisdat, Fritz Riehle, and Uwe Sterr  »View Author Affiliations

JOSA B, Vol. 25, Issue 10, pp. 1632-1638 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (514 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the influence of fast frequency fluctuations of an interrogation laser on the obtainable signal-to-noise ratio in Ramsey–Bordé atom interferometers. It is shown that the excessive high-frequency noise of diode lasers can degrade the signal-to-noise ratio significantly in an atom interferometer. To overcome these limitations, we have devised a low-noise light source by frequency filtering a diode laser in a high-finesse cavity and further amplifying the transmitted power by injection locking a solitary laser diode. When this laser source was used for atom interferometry with laser-cooled calcium atoms, the signal-to-noise ratio could be improved further by a factor of 3.5 compared with the use of the unfiltered 1 Hz linewidth laser source.

© 2008 Optical Society of America

OCIS Codes
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(140.2020) Lasers and laser optics : Diode lasers
(020.1335) Atomic and molecular physics : Atom optics

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: March 27, 2008
Revised Manuscript: July 9, 2008
Manuscript Accepted: July 14, 2008
Published: September 16, 2008

Tatiana Nazarova, Christian Lisdat, Fritz Riehle, and Uwe Sterr, "Low-frequency-noise diode laser for atom interferometry," J. Opt. Soc. Am. B 25, 1632-1638 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. J. Bordé, “Atomic interferometry with internal state labelling,” Phys. Lett. A 140, 10-12 (1989). [CrossRef]
  2. M. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett. 67, 181-184 (1991). [CrossRef]
  3. D. S. Durfee, Y. K. Shaham, and M. A. Kasevich, “Long-term stability of an area-reversible atom-interferometer Sagnac gyroscope,” Phys. Rev. Lett. 97, 240801 (2006). [CrossRef]
  4. J. B. Fixler, G. T. Foster, J. M. McGuirk, and M. Kasevich, “Atom interferometer measurement of the Newtonian constant of gravity,” Science 315, 74-77 (2007). [CrossRef]
  5. H. Müller, S. Chiow, S. Herrmann, S. Chu, and K.-Y. Chung, “Atom-interferometry tests of the isotropy of post-Newtonian gravity,” Phys. Rev. Lett. 100, 031101 (2008). [CrossRef]
  6. B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, A. Virdis, A. Clairon, N. Dimarcq, C. J. Bordé, A. Landragin, and P. Bouyer, “Six-axis inertial sensor using cold-atom interferometry,” Phys. Rev. Lett. 97, 010402 (2006). [CrossRef]
  7. C. Degenhardt, H. Stoehr, C. Lisdat, G. Wilpers, H. Schnatz, B. Lipphardt, T. Nazarova, P.-E. Pottie, U. Sterr, J. Helmcke, and F. Riehle, “Calcium optical frequency standard with ultracold atoms: approaching 10−15, relative uncertainty,” Phys. Rev. A 72, 062111 (2005). [CrossRef]
  8. G. Wilpers, C. Oates, and L. Hollberg, “Improved uncertainty budget for optical frequency measurements with microkelvin neutral atoms: results for a high-stability Ca40 optical frequency standard,” Appl. Phys. B 85, 31-44 (2006). [CrossRef]
  9. S. Bize, P. Laurent, M. Abgrall, H. Marion, I. Maksimovic, L. Cacciapuoti, J. Grünert, C. Vian, F. P. dos Santos, P. Rosenbusch, P. Lemonde, G. Santarelli, P. Wolf, A. Clairon, A. Luiten, M. Tobar, and C. Salomon, “Cold atom clocks and applications,” J. Phys. B 38, S449-S468 (2005). [CrossRef]
  10. G. Dick, “Local oscillator induced instabilities in trapped ion frequency standards,” in Proceedings of 19th Annual Precise Time and Time Interval Application and Planning Meeting (1987), pp.133-141.
  11. A. Quessada, R. P. Kovacich, I. Courtillot, A. Clairon, G. Santarelli, and P. Lemonde, “The Dick effect for an optical frequency standard,” J. Opt. B: Quantum Semiclassical Opt. 5, S150-S154 (2003). [CrossRef]
  12. P. Cheinet, B. Canuel, F. P. D. Santos, A. Gauguet, F. Leduc, and A. Landragin, “Measurement of the sensitivity function in time-domain atomic interferometer,” IEEE Trans. Instrum. Meas. 57, 1141-1148 (2005). [CrossRef]
  13. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105 (1983). [CrossRef]
  14. H. Stoehr, F. Mensing, J. Helmcke, and U. Sterr, “Diode laser with 1 Hz linewidth,” Opt. Lett. 31, 736-738 (2006). [CrossRef]
  15. T. Nazarova, F. Riehle, and U. Sterr, “Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser,” Appl. Phys. B 83, 531-536 (2006). [CrossRef]
  16. M. Notcutt, L.-S. Ma, J. Ye, and J. L. Hall, “Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity,” Opt. Lett. 30, 1815-1817 (2005). [CrossRef]
  17. S. A. Webster, M. Oxborrow, and P. Gill, “Vibration insensitive optical cavity,” Phys. Rev. A 75, 011801(R) (2007). [CrossRef]
  18. K. Numata, A. Kemery, and J. Camp, “Thermal-noise limit in the frequency stabilization of lasers with rigid cavities,” Phys. Rev. Lett. 93, 250602 (2004). [CrossRef]
  19. J. Hald and V. Ruseva, “Efficient suppression of diode-laser phase noise by optical filtering,” J. Opt. Soc. Am. B 22, 2338-2344 (2005). [CrossRef]
  20. B. Willke, N. Uehara, E. K. Gustafson, R. L. Byer, P. J. King, S. U. Seel, and J. R. L. Savage, “Spatial and temporal filtering of a 10-W Nd:YAG laser with a Fabry-Perot ring-cavity premode cleaner,” Opt. Lett. 23, 1704-1706 (1998). [CrossRef]
  21. Y. Zhang, K. Hayasaka, and K. Kasai, “Efficient noise suppression of an amplified diode-laser by optical filtering and resonant optical feedback,” Appl. Phys. B 86, 643-646 (2007). [CrossRef]
  22. J. Labaziewicz, P. Richerme, K. R. Brown, I. L. Chuang, and K. Hayasaka, “Compact, filtered diode laser system for precision spectroscopy,” Opt. Lett. 32, 572-574 (2007). [CrossRef]
  23. M. E. Hines, J. R. Collinet, and J. G. Ondria, “FM noise suppression of an injection phase-locked oscillator,” IEEE Trans. Microwave Theory Tech. MTT-16, 738-741 (1968). [CrossRef]
  24. P. Gallion, H. Nakajima, D. Debarge, and C. Chabran, “Contribution of spontaneous emission to the linewidth of an injection-locked semiconductor laser,” Electron. Lett. 21, 626-628 (1985). [CrossRef]
  25. L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. QE-22, 2070-2074 (1986). [CrossRef]
  26. P. Horak and W. H. Loh, “On the delayed self-heterodyne interferometric technique for determining the linewidth of fiber lasers,” Opt. Express 14, 3923-3928 (2006). [CrossRef]
  27. T. Nazarova, “Towards the quantum noise limit in Ramsey-Bordé atom interferometry,” Ph.D. thesis, Fakultät für Mathematik und Physik der Gottfried Wilhelm Leibniz Universität Hannover (2007), available online at http://www.tib.uni-hannover.de.
  28. W. M. Itano, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan, D. J. Heinzen, F. L. Moore, M. G. Raizen, and D. J. Wineland, “Quantum projection noise: population fluctuations in two-level systems,” Phys. Rev. A 47, 3554-3570 (1993). [CrossRef]
  29. C. W. Oates, Y. L. Coq, G. Wilpers, and L. Hollberg, “A compact high stability optical clock based on laser-cooled ca,” in Proceedings of the 20th European Frequency and Time Forum (EFTF), (2006), pp. 346-349.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited