OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 10 — Oct. 1, 2008
  • pp: 1667–1672

Experimental demonstration of controllable double magneto-optical traps on an atom chip

Hui Yan, Guo-Qing Yang, Tao Shi, Jin Wang, and Ming-Sheng Zhan  »View Author Affiliations

JOSA B, Vol. 25, Issue 10, pp. 1667-1672 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (599 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate controllable double magneto-optical traps (DMOTs) on an atom chip: At first, DMOTs, which trap atoms directly from the background rubidium vapor in an ultrahigh-vacuum environment, are realized on an atom chip simultaneously. The double quadrupole magnetic fields are produced by two separate U-shaped microwires on the atom chip, combined with a bias magnetic field. Then, we determine the best parameters for a U-shaped magneto-optical trap (UMOT) through a detailed comparison of the capture ability at different currents and the bias magnetic field between two different geometric sizes of UMOT. Finally, we demonstrate the mixing and splitting of the DMOTs on the atom chip with the help of an extra pair of anti-Helmholtz coils.

© 2008 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(020.7010) Atomic and molecular physics : Laser trapping
(020.7490) Atomic and molecular physics : Zeeman effect
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Atomic and Molecular Physics

Original Manuscript: May 28, 2008
Revised Manuscript: July 27, 2008
Manuscript Accepted: July 28, 2008
Published: September 18, 2008

Hui Yan, Guo-Qing Yang, Tao Shi, Jin Wang, and Ming-Sheng Zhan, "Experimental demonstration of controllable double magneto-optical traps on an atom chip," J. Opt. Soc. Am. B 25, 1667-1672 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Folman, P. Kruger, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic atom optics: from wires to an atom chip,” Adv. At., Mol., Opt. Phys. 48, 263-356 (2002). [CrossRef]
  2. J. Fortagh and C. Zimmermann, “Magnetic microtraps for ultracold atoms,” Rev. Mod. Phys. 79, 235-289 (2007). [CrossRef]
  3. J. J. Hu and J. P. Yin, “Controllable double-well magnetic traps for neutral atoms,” J. Opt. Soc. Am. B 19, 2844-2851 (2002). [CrossRef]
  4. J. J. Hu, J. P. Yin, and J. J. Hu, “Double-well surface magneto-optical traps for neutral atoms in a vapor cell,” J. Opt. Soc. Am. B 22, 937-942 (2005). [CrossRef]
  5. M. Yun and J. P. Yin, “Controllable double-well magneto-optic atom trap with a circular current-carrying wire,” Opt. Lett. 30, 696-698 (2005). [CrossRef]
  6. M. E. Holmes, M. Tscherneck, P. A. Quinto-Su, and N. P. Bigelow, “Isotopic difference in the heteronuclear loss rate in a two-species surface trap,” Phys. Rev. A 69, 063408-063411 (2004). [CrossRef]
  7. M. Tscherneck, J. Kleinert, C. Haimberger, M. E. Holmes, and N. P. Bigelow, “Creating, detecting and locating ultracold molecules in a surface trap,” Appl. Phys. B: Lasers Opt. 80, 639-643 (2005). [CrossRef]
  8. J. Esteve, T. Schumm, J. B. Trebbia, I. Bouchoule, A. Aspect, and C. I. Westbrook, “Realizing a stable magnetic double-well potential on an atom chip,” Eur. Phys. J. D 35, 141-146 (2005). [CrossRef]
  9. M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, “Pyramidal micromirrors for microsystems and atom chips,” Appl. Phys. Lett. 88, 071116-071118 (2006). [CrossRef]
  10. M. Singh, M. Volk, A. Akulshin, A. Sidorov, R. McLean, and P. Hannaford, “One-dimensional lattice of permanent magnetic microtraps for ultracold atoms on an atom chip,” J. Phys. B 41, 065301-065306 (2008). [CrossRef]
  11. P. Hommelhoff, W. Hansel, T. Steinmetz, T. W. Hansch, and J. Reichel, “Transporting, splitting and merging of atomic ensembles in a chip trap,” New J. Phys. 7, 3-19 (2005). [CrossRef]
  12. R. Dumke, M. Volk, T. Muther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903-097906 (2002). [CrossRef] [PubMed]
  13. R. Gerritsma, S. Whitlock, T. Fernholz, H. Schlatter, J. A. Luigjes, J. U. Thiele, J. B. Goedkoop, and R. J. C. Spreeuw, “Lattice of microtraps for ultracold atoms based on patterned magnetic films,” Phys. Rev. A 76, 033408-033413 (2007). [CrossRef]
  14. M. R. Andrews, C. G. Townsend, H. J. Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Observation of interference between two Bose condensates,” Science 275, 637-641 (1997). [CrossRef]
  15. T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Kruger, “Matter-wave interferometry in a double well on an atom chip,” Nat. Phys. 1, 57-62 (2005). [CrossRef]
  16. Y. Shin, C. Sanner, G. B. Jo, T. A. Pasquini, M. Saba, W. Ketterle, D. E. Pritchard, M. Vengalattore, and M. Prentiss, “Interference of Bose-Einstein condensates split with an atom chip,” Phys. Rev. A 72, 021604-021607 (2005). [CrossRef]
  17. W. Hansel, J. Reichel, P. Hommelhoff, and T. W. Hansch, “Trapped-atom interferometer in a magnetic microtrap,” Phys. Rev. A 64, 063607-063612 (2001). [CrossRef]
  18. J. F. Bertelsen, H. K. Andersen, S. Mai, and M. Budde, “Mixing of ultracold atomic clouds by merging of two magnetic traps,” Phys. Rev. A 75, 013404-013414 (2007). [CrossRef]
  19. C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828-832 (2005). [CrossRef]
  20. J. Laurat, C. W. Chou, H. Deng, K. S. Choi, D. Felinto, H. de Riedmatten, and H. J. Kimble, “Towards experimental entanglement connection with atomic ensembles in the single excitation regime,” New J. Phys. 9, 207-220 (2007). [CrossRef]
  21. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413-418 (2001). [CrossRef]
  22. Y. A. Chen, S. Chen, Z. S. Yuan, B. Zhao, C. S. Chuu, J. Schmiedmayer, and J. W. Pan, “Memory-built-in quantum teleportation with photonic and atomic qubits,” Nat. Phys. 4, 103-107 (2008). [CrossRef]
  23. S. Chen, Y. A. Chen, B. Zhao, Z. S. Yuan, J. Schmiedmayer, and J. W. Pan, “Demonstration of a stable atom-photon entanglement source for quantum repeaters,” Phys. Rev. Lett. 99, 180505-180508 (2007). [CrossRef]
  24. J. Reichel, W. Hansell, and T. W. Hansch, “Atomic micromanipulation with magnetic surface traps,” Phys. Rev. Lett. 83, 3398-3401 (1999). [CrossRef]
  25. S. Wildermuth, P. Kruger, C. Becker, M. Brajdic, S. Haupt, A. Kasper, R. Folman, and J. Schmiedmayer, “Optimized magneto-optical trap for experiments with ultracold atoms near surfaces,” Phys. Rev. A 69, 030901-030904 (2004). [CrossRef]
  26. B. Lev, “Fabrication of micro-magnetic traps for cold neutral atoms,” Quantum Inf. Comput. 3, 450-464 (2003).
  27. X. L. Li, M. Ke, J. Y. Tang, S. Y. Zhou, S. Y. Zhou, and Y. Z. Wang, “Trapping of neutral Rb-87 atoms on an atom chip,” Chin. Phys. Lett. 22, 2526-2529 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited