OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 10 — Oct. 1, 2008
  • pp: 1714–1719

Femtosecond stimulated Raman spectroscopy of methanol and acetone in a noncollinear geometry using a supercontinuum probe

Mateusz Plewicki and Robert Levis  »View Author Affiliations


JOSA B, Vol. 25, Issue 10, pp. 1714-1719 (2008)
http://dx.doi.org/10.1364/JOSAB.25.001714


View Full Text Article

Enhanced HTML    Acrobat PDF (387 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The design of a femtosecond stimulated Raman spectroscopy (FSRS) setup capable of recording high contrast Raman spectra is presented. The Raman transition is stimulated by a supercontinuum pulse and pumped by the second-harmonic of a Ti:sapphire amplifier system fundamental wavelength. This scheme alleviates rapid amplitude modulation near 800 nm using the smooth amplitude region in the continuum near the 400 nm pump. Raman spectra of acetone and methanol are presented in which the Raman peak intensity is the most pronounced feature of the spectrum. A mechanism limiting the resolution and peak intensity based on the nonlinear index of refraction effects is suggested.

© 2008 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.5650) Nonlinear optics : Raman effect
(190.5890) Nonlinear optics : Scattering, stimulated

ToC Category:
Nonlinear Optics

History
Original Manuscript: April 9, 2008
Revised Manuscript: August 1, 2008
Manuscript Accepted: August 5, 2008
Published: September 25, 2008

Citation
Mateusz Plewicki and Robert Levis, "Femtosecond stimulated Raman spectroscopy of methanol and acetone in a noncollinear geometry using a supercontinuum probe," J. Opt. Soc. Am. B 25, 1714-1719 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-10-1714


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Uehara and H. Tai, “Remote detection of methane with a 1.66 pm diode laser,” Appl. Opt. 31, 809-814 (1992). [CrossRef] [PubMed]
  2. T. Henningsen, M. Garbuny, and R. L. Byer, “Remote detection of CO by parametric tunable laser,” Appl. Phys. Lett. 24, 242-244 (2003). [CrossRef]
  3. D. Killinger and A. Mooradian, Optical and Laser Remote Sensing, Vol. 39, of Springer Series in Optical Sciences (Springer-Verlag, 1983).
  4. A. Mohebati and T. A. King, “Remote detection of gases by diode laser spectroscopy,” J. Mod. Opt. 35, 319-324 (1988). [CrossRef]
  5. J. C. Carter, S. M. Angel, M. Lawrence-Snyder, J. Scaffidi, R. E. Whipple, and J. G. Reynolds, “Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument,” Appl. Spectrosc. 59, 769-775 (2005). [CrossRef] [PubMed]
  6. R. W. Hellwarth, “Theory of stimulated Raman scattering,” Phys. Rev. 130, 1850-1852 (1963). [CrossRef]
  7. G. Eckhardt, S. E. Schwarz, F. J. McClung, R. W. Hellwarth, E. J. Woodbury, and D. Weiner, “Stimulated Raman scattering from organic liquids,” Phys. Rev. Lett. 9, 455-457 (1962). [CrossRef]
  8. A. K. Misra, S. K. Sharma, and P. G. Lucey, “Remote Raman spectroscopic detection of minerals and organics under illuminated conditions from a distance of 10 m using a single 532 nm laser pulse,” Appl. Spectrosc. 60, 223-228 (2006). [CrossRef] [PubMed]
  9. A. K. Misra, S. K. Sharma, C. H. Chio, P. G. Lucey, and B. Lienert, “Pulsed remote Raman system for daytime measurements of mineral spectra,” Spectrochim. Acta, Part A 61, 2281-2287 (2005). [CrossRef]
  10. T. Chen, J. M. J. Madey, F. M. Price, S. K. Sharma, and B. Lienert, “Remote Raman spectra of benzene obtained from 217 meters using a single 532 nm laser pulse,” Appl. Spectrosc. 61, 624-629 (2007). [CrossRef] [PubMed]
  11. S. K. Sharma, A. K. Misra, and B. Sharma, “Portable remote Raman system for monitoring hydrocarbon, gas hydrates and explosives in the environment,” Spectrochim. Acta, Part A 61, 2404-2412 (2005). [CrossRef]
  12. B. J. Pearson, J. L. White, T. C. Weinacht, and P. H. Bucksbaum, “Coherent control using adaptive learning algorithms,” Phys. Rev. A 63, 063412 (2001). [CrossRef]
  13. B. J. Pearson and P. H. Bucksbaum, “Control of Raman lasing in the nonimpulsive regime,” Phys. Rev. Lett. 92, 243003 (2004). [CrossRef] [PubMed]
  14. T. C. Weinacht, J. L. White, and P. H. Bucksbaum, “Toward strong field mode-selective chemistry,” J. Phys. Chem. A 103, 10166-10168 (1999). [CrossRef]
  15. M. Spanner and P. Brumer, “Mechanisms for the control of two-mode transient stimulated Raman scattering in liquids,” Phys. Rev. A 73, 023809 (2006). [CrossRef]
  16. M. Spanner and P. Brumer, “Two-pulse control of Raman scattering in liquid methanol: the dominance of classical nonlinear optical effects,” Phys. Rev. A 73, 023810 (2006). [CrossRef]
  17. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic Press, 2003).
  18. D. W. McCamant, P. Kukura, and R. A. Mathies, “Femtosecond broadband stimulated Raman: a new approach for high-performance vibrational spectroscopy,” Appl. Spectrosc. 57, 1317-1323 (2003). [CrossRef] [PubMed]
  19. P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Anal. Chem. 78, 5952-5959 (2006). [CrossRef]
  20. D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: apparatus and methods,” Rev. Sci. Instrum. 75, 4971-4980 (2004). [CrossRef]
  21. S. M. Jin, Y. J. Lee, J. W. Yu, and S. K. Kim, “Development of femtosecond stimulated Raman spectroscopy: stimulated Raman gain via elimination of cross phase modulation,” Bull. Korean Chem. Soc. 25, 1829-1832 (2004). [CrossRef]
  22. S. A. Kovalenko, A. L. Dobryakov, J. Ruthmann, and N. P. Ernsting, “Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing,” Phys. Rev. A 59, 2369-2384 (1999). [CrossRef]
  23. E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389-393 (2007). [CrossRef]
  24. S. Shim and R. A. Mathies, “Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman,” Appl. Phys. Lett. 89, 121124 (2006). [CrossRef]
  25. S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated Raman spectrograph for the near ultraviolet,” Appl. Phys. B 85, 557-564 (2006). [CrossRef]
  26. J. Piel, E. Riedle, L. Gundlach, R. Ernstorfer, and R. Eichberger, “Sub-20 fs visible pulses with 750 nJ energy from a 100 kHz noncoelinear optical parametric amplifier,” Opt. Lett. 31, 1289-1291 (2006). [CrossRef] [PubMed]
  27. P. E. Ciddor, “Refractive index of air: new equations for the visible and near infrared,” Appl. Opt. 35, 1566-1573 (1996). [CrossRef] [PubMed]
  28. K. Stelmaszczyk, P. Rohwetter, G. Mejean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Woste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977-3979 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited