OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 10 — Oct. 1, 2008
  • pp: 1720–1727

Implementation of a many-qubit Grover search with trapped ultracold ions

Wan-Li Yang, Hua Wei, Chang-Yong Chen, and Mang Feng  »View Author Affiliations

JOSA B, Vol. 25, Issue 10, pp. 1720-1727 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (341 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a potentially practical scheme for realization of an n-qubit ( n > 2 ) conditional phase flip (CPF) gate and implementation of Grover’s search algorithm in an ion-trap system. We demonstrate, both analytically and numerically, that our scheme could be achieved efficiently to find a marked state with high fidelity and high success probability. We also show the merits of the proposal that the increase of the ion number can improve the fidelity and success probability of the CPF gate. The required operations for a Grover search are very close to the capabilities of current ion-trap techniques.

© 2008 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(140.3550) Lasers and laser optics : Lasers, Raman
(140.3325) Lasers and laser optics : Laser coupling

ToC Category:
Atomic and Molecular Physics

Original Manuscript: July 11, 2008
Revised Manuscript: July 29, 2008
Manuscript Accepted: August 9, 2008
Published: September 26, 2008

Wan-Li Yang, Hua Wei, Chang-Yong Chen, and Mang Feng, "Implementation of a many-qubit Grover search with trapped ultracold ions," J. Opt. Soc. Am. B 25, 1720-1727 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325-328 (1997). [CrossRef]
  2. D. Daems and S. Guérin, “Adiabatic quantum search scheme with atoms in a cavity driven by lasers,” Phys. Rev. Lett. 99, 170503 (2007). [CrossRef] [PubMed]
  3. J. Roland and N. J. Cerf, “Quantum search by local adiabatic evolution,” Phys. Rev. A 65, 042308 (2002). [CrossRef]
  4. R. Schützhold and G. Schaller, “Adiabatic quantum algorithms as quantum phase transitions: First versus second order,” Phys. Rev. A 74, 060304(R) (2006). [CrossRef]
  5. M. Stewart Siu, “Adiabatic rotation, quantum search, and preparation of superposition states,” Phys. Rev. A 75, 062337 (2007). [CrossRef]
  6. A. Pérez and A. Romanelli, “Nonadiabatic quantum search algorithms,” Phys. Rev. A 76, 052318 (2007). [CrossRef]
  7. D. M. Tong, K. Singh, L. C. Kwek, and C. H. Oh, “Sufficiency criterion for the validity of the adiabatic approximation,” Phys. Rev. Lett. 98, 150402 (2007). [CrossRef] [PubMed]
  8. Z. Wei and M. Ying, “Quantum adiabatic computation and adiabatic conditions,” Phys. Rev. A 76, 024304 (2007). [CrossRef]
  9. H. Azuma, “Higher-order perturbation theory for decoherence in Grover's algorithm,” Phys. Rev. A 72, 042305 (2005). [CrossRef]
  10. M. Tiersch and R. Schützhold, “Non-Markovian decoherence in the adiabatic quantum search algorithm,” Phys. Rev. A 75, 062313 (2007). [CrossRef]
  11. G.-L. Long, Y.-S. Li, W.-L. Zhang, and C.-C. Tu, “Dominant gate imperfection in Grover's quantum search algorithm,” Phys. Rev. A 61, 042305 (2000). [CrossRef]
  12. B. Pablo-Norman and M. Ruiz-Altaba, “Noise in Grover's quantum search algorithm,” Phys. Rev. A 61, 012301 (1999). [CrossRef]
  13. D. Shapira, S. Mozes, and O. Biham, “The effect of unitary noise on Grover's quantum search algorithm,” e-print arXiv:quant-ph/0307142.
  14. P. J. Salas, “Noise effect on Grover algorithm,” e-print arXiv:quant-ph/0801.1261.
  15. J. A. Jones, M. Mosca, and R. H. Hansen, “Implementation of a quantum search algorithm on a quantum computer,” Nature (London) 393, 344-346 (1998). [CrossRef]
  16. I. L. Chuang, N. Gershenfeld, and M. Kubinec, “Experimental implementation of fast quantum searching,” Phys. Rev. Lett. 80, 3408-3411 (1998). [CrossRef]
  17. P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature (London) 434, 169-176 (2005). [CrossRef]
  18. P. G. Kwiat, J. R. Mitchell, P. D. D. Schwindt, and A. G. White, “Grover's search algorithm: An optical approach,” J. Mod. Opt. 47, 257-266 (2000). [CrossRef]
  19. J. L. Dodd, T. C. Ralph, and G. J. Milburn, “Experimental requirements for Grover's algorithm in optical quantum computation,” Phys. Rev. A 68, 042328 (2003). [CrossRef]
  20. M. Feng, “Grover search with pairs of trapped ions,” Phys. Rev. A 63, 052308 (2001). [CrossRef]
  21. S. Fujiwara and S. Hasegawa, “General method for realizing the conditional phase-shift gate and a simulation of Grover's algorithm in an ion-trap system,” Phys. Rev. A 71, 012337 (2005). [CrossRef]
  22. K.-A. Brickman, P. C. Haljan, P. J. Lee, M. Acton, L. Deslauriers, and C. Monroe, “Implementation of Grover's quantum search algorithm in a scalable system,” Phys. Rev. A 72, 050306(R) (2005). [CrossRef]
  23. A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83, 5166-5169 (1999). [CrossRef]
  24. F. Yamaguchi, P. Milman, M. Brune, J. M. Raimond, and S. Haroche, “Quantum search with two-atom collisions in cavity QED,” Phys. Rev. A 66, 010302(R) (2002). [CrossRef]
  25. W. L. Yang, C. Y. Chen, and M. Feng, “Implementation of three-qubit Grover search in cavity quantum electrodynamics,” Phys. Rev. A 76, 054301 (2007). [CrossRef]
  26. Z. J. Deng, M. Feng, and K. L. Gao, “Simple scheme for the two-qubit Grover search in cavity QED,” Phys. Rev. A 72, 034306 (2005). [CrossRef]
  27. A. Joshi and M. Xiao, “Three-qubit quantum-gate operation in a cavity QED system,” Phys. Rev. A 74, 052318 (2006). [CrossRef]
  28. Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai, “Coherent control of macroscopic quantum states in a single-Cooper-pair box,” Nature (London) 398, 786-788 (1999). [CrossRef]
  29. D. Vion, A. Aassime, and A. Cottet, “Manipulating the quantum state of an electrical circuit,” Science 296, 886-889 (2002). [CrossRef] [PubMed]
  30. M. S. Anwar, D. Blazina, H. A. Carteret, S. B. Duckett, and J. A. Jones, “Implementing Grover's quantum search on a para-hydrogen based pure state NMR quantum computer,” Chem. Phys. Lett. 400, 94-97 (2004). [CrossRef]
  31. K. Mølmer and A. Sørensen, “Multiparticle entanglement of hot trapped ions,” Phys. Rev. Lett. 82, 1835-1838 (1999). [CrossRef]
  32. A. Sørensen and K. Mølmer, “Quantum computation with ions in thermal motion,” Phys. Rev. Lett. 82, 1971-1974 (1999). [CrossRef]
  33. M. J. Bremner, C. M. Dawson, J. L. Dodd, A. Gilchrist, A. W. Harrow, D. Mortimer, M. A. Nielsen, and T. J. Osborne, “Practical scheme for quantum computation with any two-qubit entangling gate,” Phys. Rev. Lett. 89, 247902 (2002). [CrossRef] [PubMed]
  34. S. Lloyd, “Almost any quantum logic gate is universal,” Phys. Rev. Lett. 75, 346-349 (1995). [CrossRef] [PubMed]
  35. N. Schuch and J. Siewert, “Programmable networks for quantum algorithms,” Phys. Rev. Lett. 91, 027902 (2003). [CrossRef] [PubMed]
  36. For example, R. L. de Matos Filho and W. Vogel, “Even and odd coherent states of the motion of a trapped ion,” Phys. Rev. Lett. 76, 608-611 (1996) and W. Vogel and R. L. de Matos Filho, “Nonlinear Jaynes-Cummings dynamics of a trapped ion,” Phys. Rev. A 52, 4214-4217 (1995). For clarity of description below, we first assume a weak radiation without inducing AC Stark shift. So we consider in Eq. the resonant excitation involving motional quanta exchange. Actually, with a strong radiation, we could also do our job by carrier transition, as discussed later. [CrossRef] [PubMed]
  37. J. F. Poyatos, J. I. Cirac, and P. Zoller, “Complete characterization of a quantum process: The two-bit quantum gate,” Phys. Rev. Lett. 78, 390-393 (1997). [CrossRef]
  38. M. J. McDonnell, J.-P. Stacey, S. C. Webster, J. P. Home, A. Ramos, D. M. Lucas, D. N. Stacey, and A. M. Steane, “High-efficiency detection of a single quantum of angular momentum by suppression of optical pumping,” Phys. Rev. Lett. 93, 153601 (2004). [CrossRef] [PubMed]
  39. C. F. Roos, M. Riebe, H. Haffner, W. Hansel, J. Benhelm, G. P. T. Lancaster, C. Becher, F. Schmidt-Kaler, and R. Blatt, “Control and measurement of three-qubit entangled states,” Science 304, 1478-1480 (2004). [CrossRef] [PubMed]
  40. D. Jonathan, M. B. Plenio, and P. L. Knight, “Fast quantum gates for cold trapped ions,” Phys. Rev. A 62, 042307 (2000). [CrossRef]
  41. M. D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, “Deterministic quantum teleportation of atomic qubits,” Nature 429, 737-739 (2004). [CrossRef] [PubMed]
  42. H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-alkar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature (London) 438, 643-646 (2005). [CrossRef]
  43. D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature (London) 417, 709-711 (2002). [CrossRef]
  44. D. Leibfried, E. Knill, C. Ospelkaus, and D. J. Wineland, “Transport quantum logic gates for trapped ions,” Phys. Rev. A 76, 032324 (2007). [CrossRef]
  45. D. Leibfried, B. DeMarco, V. Meyer, M. Rowe, A. Ben-Kish, M. Barrett, J. Britton, J. Hughes, W. M. Itano, B. M. Jelenkovic, C. Langer, D. Lucas, T. Rosenband, and D. J. Wineland, “Towards quantum information with trapped ions at NIST,” J. Phys. B 36, 599-612 (2003). [CrossRef]
  46. R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188-5191 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited