OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 10 — Oct. 1, 2008
  • pp: 1748–1755

Plasmonic light-emission enhancement with isolated metal nanoparticles and their coupled arrays

G. Sun, J. B. Khurgin, and R. A. Soref  »View Author Affiliations


JOSA B, Vol. 25, Issue 10, pp. 1748-1755 (2008)
http://dx.doi.org/10.1364/JOSAB.25.001748


View Full Text Article

Enhanced HTML    Acrobat PDF (727 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a systematic study of the enhancement of radiative efficiency of light-emitting matter achieved by proximity to metal nanoparticles. Our goal is to ascertain the limits of the attainable enhancement. Two separate arrangements of metal nanoparticles are studied, namely isolated particles and an array of particles. The method of analysis is based on the effective mode volume theory. Using the example of an In Ga N Ga N quantum-well active region positioned in close proximity to Ag nanospheres, we obtain optimal parameters for the nanoparticles for maximum attainable enhancement. Our results show that while the enhancement due to isolated metal nanoparticles is significant, only modest enhancement can be achieved with an ordered array. We further conclude that a random assembly of isolated particles holds an advantage over the ordered arrays for light-emitting devices of finite area.

© 2008 Optical Society of America

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: June 27, 2008
Manuscript Accepted: July 2, 2008
Published: September 26, 2008

Citation
G. Sun, J. B. Khurgin, and R. A. Soref, "Plasmonic light-emission enhancement with isolated metal nanoparticles and their coupled arrays," J. Opt. Soc. Am. B 25, 1748-1755 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-10-1748


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005). [CrossRef] [PubMed]
  2. S. Kühn, U. Håkanson, L. Rogobete, V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006). [CrossRef] [PubMed]
  3. R. Carminati, J.-J. Greffet, C. Henkel, J. M. Vigoureux, “Radiative and nonradiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368–375 (2006). [CrossRef]
  4. L. Rogobete, F. Kaminski, M. Agio, V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32, 1623–1625 (2007). [CrossRef] [PubMed]
  5. M. Thomas, J.-J. Greffet, R. Carminatia, J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863–3865 (2004). [CrossRef]
  6. T.-K. Lee, J. L. Birman, “Molecule adsorbed on plane metal surface: coupled system eigenstates,” Phys. Rev. B 22, 5953–5960 (1980). [CrossRef]
  7. L. Rogobete, H. Schniepp, V. Sandoghdar, C. Henkel, “Spontaneous emission in nanoscopic dielectric particles,” Opt. Lett. 28, 1736–1738 (2003). [CrossRef] [PubMed]
  8. C. Girard, O. J. F. Martin, A. Dereux, “Molecular lifetime changes induced by nanometer scale optical fields,” Phys. Rev. Lett. 75, 3098–3101 (1995). [CrossRef] [PubMed]
  9. L. Novotny, “Single molecule fluorescence in inhomogeneous environments,” Appl. Phys. Lett. 69, 3806–3808 (1996). [CrossRef]
  10. V. V. Klimov, M. Ducloy, V. S. Letokhov, “Spontaneous emission rate and level shift of an atom inside a dielectric microsphere,” J. Mod. Opt. 43, 549–563 (1996). [CrossRef]
  11. A. Rahmani, P. C. Chaumet, F. de Fornel, “Environment-induced modification of spontaneous emission: single-molecule near-field probe,” Phys. Rev. A 63, 023819 (2001). [CrossRef]
  12. G. Sun, J. B. Khurgin, R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007). [CrossRef]
  13. J. B. Khurgin, G. Sun, R. A. Soref, “Enhancement of luminescence efficiency using surface plasmon polaritons—figures of merit,” J. Opt. Soc. Am. B 24, 1968–1980 (2007). [CrossRef]
  14. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946). [CrossRef]
  15. S. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14, 1957–1964 (2006). [CrossRef] [PubMed]
  16. J. D. Jackson, Classical Electrodynamics2nd ed. (John Wiley & Sons, 1962) pp. 150 and 396.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited