OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 10 — Oct. 1, 2008
  • pp: 1763–1770

Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers

Brandon G. Bale, J. Nathan Kutz, Andy Chong, William H. Renninger, and Frank W. Wise  »View Author Affiliations


JOSA B, Vol. 25, Issue 10, pp. 1763-1770 (2008)
http://dx.doi.org/10.1364/JOSAB.25.001763


View Full Text Article

Enhanced HTML    Acrobat PDF (633 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a theoretical description of the generation of ultrashort, high-energy pulses in an all-normal dispersion laser cavity with spectral filtering. A reduced variational model based upon the Haus master mode-locking equations with quintic saturation is shown to characterize the experimentally observed dynamics. Critical in driving the intracavity dynamics is the nontrivial phase profiles generated and their periodic modification from the spectral filter. The theory gives a simple geometrical description of the intracavity dynamics and possible operation modes of the laser cavity. Further, it provides a simple and efficient method for optimizing the laser cavity performance.

© 2008 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.3538) Lasers and laser optics : Lasers, pulsed

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 25, 2008
Revised Manuscript: July 1, 2008
Manuscript Accepted: July 26, 2008
Published: September 29, 2008

Citation
Brandon G. Bale, J. Nathan Kutz, Andy Chong, William H. Renninger, and Frank W. Wise, "Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers," J. Opt. Soc. Am. B 25, 1763-1770 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-10-1763


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173-1185 (2000). [CrossRef]
  2. I. N. Duling and M. L. Dennis, Compact Sources of Ultrafast Lasers (Cambridge U. Press, 1995). [CrossRef]
  3. F. O. Ilday, F. W. Wise, and T. Sosnowski, “High-energy femtosecond stretched-pulse fiber laser with a nonlinear optical loop mirror,” Opt. Lett. 27, 1531-1533 (2002). [CrossRef]
  4. F. O. Ilday, J. Buckley, F. W. Wise, and W. G. Clark, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004). [CrossRef] [PubMed]
  5. J. Buckley, F. W. Wise, F. O. Ilday, and T. Sosnowski, “Femtosecond fiber lasers with pulse energies above 10 nJ,” Opt. Lett. 30, 1888-1890 (2005). [CrossRef] [PubMed]
  6. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095-10100 (2006). [CrossRef] [PubMed]
  7. A. Chong, W. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32, 2408-2410 (2007). [CrossRef] [PubMed]
  8. A. Chong, W. Renninger, and F. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25, 140-148 (2008). [CrossRef]
  9. W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008). [CrossRef]
  10. J. N. Kutz, “Mode-locked soliton lasers,” SIAM Rev. 48, 629-678 (2006). [CrossRef]
  11. A. Fernandez, T. Fuji, A. Poppe, A. Frbach, F. Krausz, and A. Apolonski, “Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification,” Opt. Lett. 29, 1366-1368 (2004). [CrossRef] [PubMed]
  12. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Structures for additive pulse mode locking,” J. Opt. Soc. Am. B 8, 2068-2076 (1991). [CrossRef]
  13. J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E 55, 4783-4796 (1997). [CrossRef]
  14. J. M. Soto-Crespo and N. Akhmediev, “Composite solitons and two-pulse generation in passively mode-locked lasers modeled by the complex quintic Swift-Hohenberg equation,” Phys. Rev. E 66, 066610 (2002). [CrossRef]
  15. J. M. Soto-Crespo, N. Akhmediev, and K. S. Chang, “Simultaneous existence of multiplicity of stable and unstable solitons in dissipative systems,” Phys. Lett. A 291, 115-123 (2001). [CrossRef]
  16. J. M. Soto-Crespo, N. N. Akhmediev, and V. V. Afanasjev, “Stability of the pulselike solutions of the quintic complex Ginzburg-Landau equation,” J. Opt. Soc. Am. B 13, 1439-1449 (1996). [CrossRef]
  17. V. L. Kalashnikov and A. Chernykh, “Spectral anomalies and stability of chirped-pulse oscillators,” Phys. Rev. A 75, 033820 (2007). [CrossRef]
  18. V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys. B 83, 503-510 (2006). [CrossRef]
  19. P. A. Belanger, “On the profile of pulses generated by fiber lasers:the highly-chirped positive dispersion regime (similariton),” Opt. Express 14, 12174-12182 (2006). [CrossRef] [PubMed]
  20. P. A. Belanger, “Stable operation of mode-locked fiber lasers: similariton regime,” Opt. Express 15, 11033-11041 (2007). [CrossRef] [PubMed]
  21. N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372, 3124-3128 (2008). [CrossRef]
  22. B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, “Spectral filtering for mode-locking in the normal dispersive regime,” Opt. Lett. 33, 911-913 (2008). [CrossRef] [PubMed]
  23. H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse mode-locking in fiber lasers,” IEEE J. Quantum Electron. 30, 200-208 (1994). [CrossRef]
  24. B. A. Malomed, “Variational methods in nonlinear fiber optics and related fields,” Prog. Opt. 43, 69-191 (2002).
  25. B. G. Bale and J. N. Kutz, “Variational method for mode-locked lasers,” J. Opt. Soc. Am. B 25, 1193-1202 (2008). [CrossRef]
  26. C. Jirauschek, U. Morgner, and F. X. Krtner, “Variational analysis of spatio-temporal pulse dynamics in dispersive Kerr media,” J. Opt. Soc. Am. B 19, 1716-1721 (2002). [CrossRef]
  27. C. Antonelli, J. Chen, and F. X. Kärtner, “Intracavity pulse dynamics and stability for passively mode-locked lasers,” Opt. Express 15, 5919-5924 (2007). [CrossRef] [PubMed]
  28. N. G. Usechak and G. P. Agrawal, “Semi-analytic technique for analyzing mode-locked lasers,” Opt. Express 13, 2075-2081 (2005). [CrossRef] [PubMed]
  29. N. G. Usechak and G. P. Agrawal, “Rate-equation approach for frequency-modulation mode locking using the moment method,” J. Opt. Soc. Am. B 22, 2570-2580 (2005). [CrossRef]
  30. S. Namiki, E. P. Ippen, H. A. Haus, and C. X. Yu, “Energy rate equations for mode-locked lasers,” J. Opt. Soc. Am. B 14, 2099-2111 (1997). [CrossRef]
  31. S. Namiki, E. P. Ippen, H. A. Haus, and C. X. Yu, “Energy rate equations for mode-locked lasers,” J. Opt. Soc. Am. B 14, 2099-2111 (1997). [CrossRef]
  32. E. N. Tsoy, A. A. Ankiewicz, and N. Akhmediev, “Dynamical models for dissipative localized waves of the complex Ginzburg-Landau equation,” Phys. Rev. E 73, 036621 (2006). [CrossRef]
  33. D. Anderson, M. Lisak, and A. Berntson, “A variational approach to nonlinear evolution equations in optics,” Pramana, J. Phys. 57, 917-936 (2001). [CrossRef]
  34. P. Drazin, Nonlinear Systems (Cambridge U. Press, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited