OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 11 — Nov. 1, 2008
  • pp: 1780–1785

Propagation of partially coherent light beams with parabolic intensity distribution in noninstantaneous nonlinear Kerr media

T. Hansson, D. Anderson, M. Lisak, V. E. Semenov, and U. Österberg  »View Author Affiliations


JOSA B, Vol. 25, Issue 11, pp. 1780-1785 (2008)
http://dx.doi.org/10.1364/JOSAB.25.001780


View Full Text Article

Enhanced HTML    Acrobat PDF (110 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An exact solution describing the self-similar dynamics of partially coherent light beams in nonlinear and noninstantaneous Kerr media is presented and analyzed. The description is based on the Wigner formalism for analyzing the propagation of partially coherent light. The solution for the Wigner distribution corresponds to a transverse beam intensity profile of a parabolic form, and the effects of the partial coherence on the beam dynamics are analyzed. The presence of partial coherence in the parabolic beam is shown to increase the diffraction effect, thus weakening the nonlinear self-focusing and increasing the defocusing rate. In the case of an almost coherent beam and a strongly nonlinear situation in a defocusing medium, the new solution is shown to reduce to a previously given parabolic similarity solution for coherent high intensity beam–pulse propagation.

© 2008 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(190.0190) Nonlinear optics : Nonlinear optics
(190.3270) Nonlinear optics : Kerr effect
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

History
Original Manuscript: June 2, 2008
Manuscript Accepted: August 21, 2008
Published: October 8, 2008

Citation
T. Hansson, D. Anderson, M. Lisak, V. E. Semenov, and U. Österberg, "Propagation of partially coherent light beams with parabolic intensity distribution in noninstantaneous nonlinear Kerr media," J. Opt. Soc. Am. B 25, 1780-1785 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-11-1780


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. A. Pasmanik, “Self-action of incoherent light beams,” Sov. Phys. JETP 39, 234-238 (1974).
  2. M. Mitchell, Z. Chen, M. Shih, and M. Segev, “Self-trapping of partially spatially incoherent light,” Phys. Rev. Lett. 77, 490-493 (1996). [CrossRef] [PubMed]
  3. M. Mitchell, M. Segev, T. H. Coskun, and D. N. Christodoulides, “Theory of self-trapped spatially incoherent light beams,” Phys. Rev. Lett. 79, 4990-4993 (1997). [CrossRef]
  4. D. N. Christodoulides and T. H. Coskun, “Theory of incoherent self-focusing in biased photo-refractive media,” Phys. Rev. Lett. 78, 646-649 (1997). [CrossRef]
  5. A. W. Snyder and D. J. Mitchell, “Big incoherent solitons,” Phys. Rev. Lett. 80, 1422-1424 (1998). [CrossRef]
  6. V. V. Shkunov and D. Z. Anderson, “Radiation transfer model of self-trapping spatially incoherent radiation by nonlinear media,” Phys. Rev. Lett. 81, 2683-2686 (1998). [CrossRef]
  7. B. Hall, M. Lisak, D. Anderson, R. Fedele, and V. Semenov, “Statistical theory for incoherent light propagation in nonlinear media,” Phys. Rev. E 65, 035602 (2002). [CrossRef]
  8. D. N. Christodoulides, E. D. Eugenieva, T. H. Coskun, M. Segev, and M. Mitchell, “Equivalence of three approaches describing partially incoherent wave propagation to inertial nonlinear media,” Phys. Rev. E 63, 035601 (2001). [CrossRef]
  9. M. Lisak, L. Helczynski, and D. Anderson, “Relation between the Wigner formalism and the three approaches describing partially incoherent wave propagation in nonlinear optical media,” Opt. Commun. 220, 321-323 (2003). [CrossRef]
  10. A. W. Snyder and M. Mitchell, “Mighty morphing spatial solitons and bullets,” Opt. Lett. 22, 16-18 (1997). [CrossRef] [PubMed]
  11. D. N. Christodoulides, T. H. Coskun, and R. I. Joseph, “Incoherent spatial solitons in saturable nonlinear media,” Opt. Lett. 22, 1080-1082 (1997). [CrossRef] [PubMed]
  12. D. Anderson, M. Desaix, M. Karlsson, M. Lisak, and M. L. Quiroga-Teixeiro, “Wave breaking free pulses in nonlinear-optical fibres,” J. Opt. Soc. Am. B 10, 1185-1190 (1993). [CrossRef]
  13. V. I. Kruglov, A. C. Peacock, J. M. Dudley, and J. D. Harvey, “Self-similar propagation of high-power parabolic pulses in optical fiber amplifier,” Opt. Lett. 25, 1753-1755 (2000). [CrossRef]
  14. V. I. Kruglov, A. C. Peacock, and J. D. Harvey, “Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients,” Phys. Rev. Lett. 90, 113902 (2003). [CrossRef] [PubMed]
  15. M. Lisak, B. Hall, D. Anderson, R. Fedele, V. Semenov, P. K. Shukla, and A. Hasegawa, “Nonlinear dynamics of partially incoherent optical waves based on the Wigner transform method,” Phys. Scr., T 98, 12-17 (2002).
  16. D. Dragoman, “Wigner distribution function in nonlinear optics,” Appl. Opt. 35, 4142-4146 (1998). [CrossRef]
  17. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited