OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 11 — Nov. 1, 2008
  • pp: 1786–1793

Extremely large nonresonant second-order nonlinear optical response in crystals of the stilbazolium salt DAPSH

Harry Figi, Lukas Mutter, Christoph Hunziker, Mojca Jazbinšek, Peter Günter, and Benjamin J. Coe  »View Author Affiliations


JOSA B, Vol. 25, Issue 11, pp. 1786-1793 (2008)
http://dx.doi.org/10.1364/JOSAB.25.001786


View Full Text Article

Enhanced HTML    Acrobat PDF (576 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the extremely large nonresonant quadratic optical nonlinearity of the stilbazolium salt trans- 4 -(dimethylamino)-N-phenyl-4-stilbazolium hexafluorophosphate (DAPSH). The phenyl-pyridinium chromophores in DAPSH crystals grown from acetone solution pack with a highly aligned polar order, resulting in a very large birefringence, Δ n = 1.17 ± 0.06 at λ = 0.83 μ m and Δ n = 0.83 ± 0.04 at λ = 1.55 μ m . More importantly, this leads to an extremely large diagonal quadratic susceptibility with the nonlinear optical coefficient for second-harmonic generation reaching up to d 111 = 290 ± 40 pm V at 1.907 μ m fundamental wavelength, which presents a considerable improvement with respect to the presently best material trans- 4 -(dimethylamino)-N-methyl-4-stilbazolium tosyate (DAST) with d 111 = 210 ± 55 pm V at λ = 1.907 μ m . The result is in agreement with the preferential packing of the chromophores and the previous studies demonstrating higher microscopic nonlinearity of the chromophores in DAPSH compared to that of DAST.

© 2008 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(160.4760) Materials : Optical properties
(160.4890) Materials : Organic materials
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials

ToC Category:
Materials

History
Original Manuscript: July 11, 2008
Revised Manuscript: August 20, 2008
Manuscript Accepted: August 22, 2008
Published: October 8, 2008

Citation
Harry Figi, Lukas Mutter, Christoph Hunziker, Mojca Jazbinšek, Peter Günter, and Benjamin J. Coe, "Extremely large nonresonant second-order nonlinear optical response in crystals of the stilbazolium salt DAPSH," J. Opt. Soc. Am. B 25, 1786-1793 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-11-1786


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. (Weinheim, Ger.) 14, 1339-1365 (2002). [CrossRef]
  2. Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nat. Photonics 1, 180-185 (2007). [CrossRef]
  3. M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401-1403 (2002). [CrossRef] [PubMed]
  4. Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119-122 (2000). [CrossRef]
  5. O.-P. Kwon, B. Ruiz, A. Choubey, L. Mutter, A. Schneider, M. Jazbinsek, V. Gramlich, and P. Günter, “Organic nonlinear optical crystals based on configurationally locked polyene for melt growth,” Chem. Mater. 18, 4049-4054 (2006). [CrossRef]
  6. H. S. Nalwa, T. Watanabe, and S. Miyata, “Organic materials for second-order nonlinear optics,” in Nonlinear Optics of Organic Molecules and Polymers, H.S.Nalwa and S.Miyata, eds. (CRC, 1997), Chap. 4, pp. 89-350.
  7. C. Bosshard, K. Sutter, P. Prêtre, J. Hulliger, M. Flörsheimer, P. Kaatz, and P. Günter, Organic Nonlinear Optical Materials (Gordon and Breach, 1995).
  8. C. Bosshard, M. Bösch, I. Liakatas, M. Jäger, and P. Günter, “Second-order nonlinear optical organic materials: recent developments,” in Nonlinear Optical Effects and Materials, P.Günter, ed. (Springer-Verlag, 2000), Vol. 72, Chap. 3, pp. 163-299.
  9. M. Jazbinsek, L. Mutter, and P. Günter, “Photonic applications with the organic nonlinear optical crystal DAST,” IEEE J. Sel. Top. Quantum Electron. (to be published).
  10. S. R. Marder, J. W. Perry, and W. P. Schaefer, “Synthesis of organic salts with large second-order optical nonlinearities,” Science 245, 626-628 (1989). [CrossRef] [PubMed]
  11. S. R. Marder, J. W. Perry, and C. P. Yakymyshyn, “Organic salts with large second-order optical nonlinearities,” Chem. Mater. 6, 1137-1147 (1994). [CrossRef]
  12. U. Meier, M. Bösch, C. Bosshard, F. Pan, and P. Günter, “Parametric interactions in the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate at telecommunication wavelengths,” J. Appl. Phys. 83, 3486-3489 (1998). [CrossRef]
  13. F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate,” Appl. Phys. Lett. 69, 13-15 (1996). [CrossRef]
  14. A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. A. Khan, and P. Günter, “Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment,” J. Opt. Soc. Am. B 23, 1822-1835 (2006). [CrossRef]
  15. T. Taniuchi, S. Ikeda, S. Okada, and H. Nakanishi, “Tunable sub-terahertz wave generation from an organic DAST crystal,” Jpn. J. Appl. Phys., Part 2 44, L652-L654 (2005). [CrossRef]
  16. T. Kaino, B. Cai, and K. Takayama, “Fabrication of DAST channel optical waveguides,” Adv. Funct. Mater. 12, 599-603 (2002). [CrossRef]
  17. W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, “Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient,” Appl. Phys. Lett. 84, 3729-3731 (2004). [CrossRef]
  18. L. Mutter, A. Guarino, M. Jazbinsek, M. Zgonik, P. Günter, and M. Döbeli, “Ion implanted optical waveguides in nonlinear optical organic crystal,” Opt. Express 15, 629-638 (2007). [CrossRef] [PubMed]
  19. L. Mutter, M. Koechlin, M. Jazbinšek, and P. Günter, “Direct electron beam writing of channel waveguides in nonlinear optical organic crystals,” Opt. Express 15, 16828-16838 (2007). [CrossRef] [PubMed]
  20. Z. Yang, S. Aravazhi, P. Seiler, M. Jazbinsek, and P. Günter, “Synthesis and crystal growth of stilbazolium derivatives for second-order nonlinear optics,” Adv. Funct. Mater. 15, 1072-1076 (2005). [CrossRef]
  21. Z. Glavcheva, H. Umezawa, Y. Mineno, T. Odani, S. Okada, S. Ikeda, T. Taniuchi, and H. Nakanishi, “Synthesis and properties of 1-methyl-4-2-[4-(dimethylamino)phenyl]ethenylpyridinium p-toluenesulfonate derivatives with isomorphous crystal structure,” Jpn. J. Appl. Phys., Part 1 44, 5231-5235 (2005). [CrossRef]
  22. B. Ruiz, Z. Yang, V. Gramlich, M. Jazbinsek, and P. Günter, “Synthesis and crystal structure of a new stilbazolium salt with large second-order optical nonlinearity,” J. Mater. Chem. 16, 2839-2842 (2006). [CrossRef]
  23. Z. Yang, M. Jazbinsek, B. Ruiz, S. Aravazhi, V. Gramlich, and P. Günter, “Molecular engineering of stilbazolium derivatives for second-order nonlinear optics,” Chem. Mater. 19, 3512-3518 (2007). [CrossRef]
  24. Z. Yang, L. Mutter, M. Stillhart, B. Ruiz, S. Aravazhi, M. Jazbinsek, A. Schneider, V. Gramlich, and P. Günter, “Large-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation,” Adv. Funct. Mater. 17, 2018-2023 (2007). [CrossRef]
  25. L. Mutter, F. D. J. Brunner, Z. Yang, M. Jazbinšek, and P. Günter, “Linear and nonlinear optical properties of the organic crystal DSTMS,” J. Opt. Soc. Am. B 24, 2556-2561 (2007). [CrossRef]
  26. B. J. Coe, J. P. Essex-Lopresti, J. A. Harris, S. Houbrechts, and A. Persoons, “Ruthenium(ii) ammine centres as efficient electron donor groups for quadratic non-linear optics,” Chem. Commun. 1645-1646 (1997). [CrossRef]
  27. B. J. Coe, J. A. Harris, L. J. Harrington, J. C. Jeffery, L. H. Rees, S. Houbrechts, and A. Persoons, “Enhancement of molecular quadratic hyperpolarizabilities in ruthenium (ii) 4,4′-bipyridinium complexes by n-phenylation,” Inorg. Chem. 37, 3391-3399 (1998). [CrossRef]
  28. B. J. Coe, J. A. Harris, I. Asselberghs, K. Clays, G. Olbrechts, A. Persoons, J. T. Hupp, R. C. Johnson, S. J. Coles, M. B. Hursthouse, and K. Nakatani, “Quadratic nonlinear optical properties of n-aryl stilbazolium dyes,” Adv. Funct. Mater. 12, 110-116 (2002). [CrossRef]
  29. B. J. Coe, J. A. Harris, I. Asselberghs, K. Wostyn, K. Clays, A. Persoons, B. S. Brunschwig, S. J. Coles, T. Gelbrich, M. E. Light, M. B. Hursthouse, and K. Nakatani, “Quadratic optical nonlinearities of n-methyl and n-aryl pyridinium salts,” Adv. Funct. Mater. 13, 347-357 (2003). [CrossRef]
  30. B. Coe, D. Beljonne, H. Vogel, J. Garin, and J. Orduna, “Theoretical analyses of the effects on the linear and quadratic nonlinear optical properties of N-arylation of pyridinium groups in stilbazolium dyes,” J. Phys. Chem. A 109, 10052-10057 (2005). [CrossRef]
  31. B. Ruiz, B. J. Coe, R. Gianotti, V. Gramlich, M. Jazbinsek, and P. Günter, “Polymorphism, crystal growth and characterization of an organic nonlinear optical material: DAPSH,” Cryst. Eng. Comm. 9, 772-776 (2007).
  32. M. S. Shumate, “Interferometric measurements of large indices of refraction,” Appl. Opt. 5, 327-331 (1966). [CrossRef] [PubMed]
  33. J. G. Bergman and G. R. Crane, “Structural aspects of nonlinear optics: optical properties of KIO2F2 and its related iodates,” J. Chem. Phys. 60, 2470-2474 (1974). [CrossRef]
  34. J. Zyss and J. L. Oudar, “Relations between microscopic and macroscopic lowest-order optical nonlinearities of molecular crystals with one- or two-dimensional units,” Phys. Rev. A 26, 2028-2048 (1982). [CrossRef]
  35. J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667-1681 (1970). [CrossRef]
  36. R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17-19 (1964). [CrossRef]
  37. I. Liakatas, C. Cai, M. Bosch, M. Jager, C. Bosshard, P. Gunter, C. Zhang, and L. R. Dalton, “Importance of intermolecular interactions in the nonlinear optical properties of poled polymers,” Appl. Phys. Lett. 76, 1368-1370 (2000). [CrossRef]
  38. W. N. Herman and L. M. Hayden, “Maker fringes revisited: second-harmonic generation from birefringent or absorbing materials,” J. Opt. Soc. Am. B 12, 416-427 (1995). [CrossRef]
  39. B. Wyncke and F. Brehat, “Calculation of the effective second-order non-linear coefficients along the phase matching directions in acentric orthorhombic biaxial crystals,” J. Phys. B 22, 363-376 (1989). [CrossRef]
  40. D. W. Berreman, “Optics in stratified and anisotropic media: 4×4-matrix formulation,” J. Opt. Soc. Am. 62, 502-510 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited