OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 11 — Nov. 1, 2008
  • pp: 1840–1849

Controlling the photonic band structure of optically driven cold atoms

Jin-Hui Wu, M. Artoni, and G. C. La Rocca  »View Author Affiliations


JOSA B, Vol. 25, Issue 11, pp. 1840-1849 (2008)
http://dx.doi.org/10.1364/JOSAB.25.001840


View Full Text Article

Enhanced HTML    Acrobat PDF (1458 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An analytical method based on a two-mode approximation is here developed to study the optical response of a periodically modulated medium of ultracold atoms driven into a regime of standing-wave electromagnetically induced transparency. A systematic comparison with the usual approach based on the coupled Maxwell–Liouville equations shows that our method is very accurate in the frequency region of interest. Our method, in particular, explains in a straightforward manner the formation of a well-developed photonic bandgap in the optical Bloch wave vector dispersion. For ultracold Rb 87 atoms nearly perfect reflectivity may be attained and a light pulse whose frequency components are contained within the gap is seen to be reflected with little loss and deformation.

© 2008 Optical Society of America

OCIS Codes
(270.1670) Quantum optics : Coherent optical effects
(190.4223) Nonlinear optics : Nonlinear wave mixing
(160.5298) Materials : Photonic crystals

ToC Category:
Quantum Optics

History
Original Manuscript: May 13, 2008
Revised Manuscript: September 1, 2008
Manuscript Accepted: September 9, 2008
Published: October 15, 2008

Citation
Jin-Hui Wu, M. Artoni, and G. C. La Rocca, "Controlling the photonic band structure of optically driven cold atoms," J. Opt. Soc. Am. B 25, 1840-1849 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-11-1840


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36-42 (1997). [CrossRef]
  2. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633-673 (2005). [CrossRef]
  3. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meterspersecond in an ultracold atomic gas,” Nature (London) 397, 594-598 (1999). [CrossRef]
  4. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2001). [CrossRef]
  5. M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094-5097 (2000). [CrossRef] [PubMed]
  6. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature (London) 409, 490-493 (2001). [CrossRef]
  7. J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005). [CrossRef] [PubMed]
  8. S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611-4614 (1999). [CrossRef]
  9. D. A. Braje, V. Balic, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801(R) (2003). [CrossRef]
  10. A. B. Matsko, A. Novikova, G. R. Welch, and M. S. Zubairy, “Enhancement of Kerr nonlinearity by multiphoton coherence,” Opt. Lett. 28, 96-98 (2003). [CrossRef] [PubMed]
  11. C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett. 90, 197902 (2003). [CrossRef] [PubMed]
  12. S. Rebic, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalan, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004). [CrossRef]
  13. S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611-3614 (1998). [CrossRef]
  14. A. Andre and M. D. Lukin, “Manipulating light pulses via dynamically controlled photonic band gap,” Phys. Rev. Lett. 89, 143602 (2002). [CrossRef] [PubMed]
  15. M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature (London) 426, 638-641 (2003). [CrossRef]
  16. A. Andre, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Nonlinear optics with stationary pulses of light,” Phys. Rev. Lett. 94, 063902 (2005). [CrossRef] [PubMed]
  17. B. S. Ham, “Spatiotemporal quantum manipulation of traveling light: quantum transport,” Appl. Phys. Lett. 88, 121117 (2006). [CrossRef]
  18. F. E. Zimmer, A. Andre, M. D. Lukin, and M. Fleischhauer, “Coherent control of stationary light pulses,” Opt. Commun. 264, 441-453 (2006). [CrossRef]
  19. S. A. Moiseev and B. S. Ham, “Generation of entangled lights with temporally reversed photon wave packets,” Phys. Rev. A 71, 053802 (2005). [CrossRef]
  20. K. R. Hansen and K. Molmer, “Trapping of light pulses in ensembles of stationary lambda atoms,” Phys. Rev. A 75, 053802 (2007). [CrossRef]
  21. K. R. Hansen and K. Molmer, “Stationary light pulses in ultracold atomic gases,” Phys. Rev. A 75, 065804 (2007). [CrossRef]
  22. K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2001).
  23. X.-M. Su and B. S. Ham, “Dynamic control of the photonic band gap using quantum coherence,” Phys. Rev. A 71, 013821 (2005). [CrossRef]
  24. D. Petrosyan, “Tunable photonic band gaps with coherently driven atoms in optical lattices,” Phys. Rev. A 76, 053823 (2007). [CrossRef]
  25. M. Artoni and G. C. La Rocca, “Optically tunable photonic stop bands in homogeneous absorbing media,” Phys. Rev. Lett. 96, 073905 (2006). [CrossRef] [PubMed]
  26. Q.-Y. He, Y. Xue, M. Artoni, G. C. La Rocca, J.-H. Xu, and J.-Y. Gao, “Coherently induced stop-bands in resonantly absorbing and inhomogeneously broadened doped crystals,” Phys. Rev. B 73, 195124 (2006). [CrossRef]
  27. Q.-Y. He, J.-H. Wu, T.-J. Wang, and J.-Y. Gao, “Dynamic control of the photonic stop bands formed by a standing wave in inhomogeneous broadening solids,” Phys. Rev. A 73, 053813 (2006). [CrossRef]
  28. J. P. Prineas, J. Y. Zhou, J. Kuhl, H. M. Gibbs, G. Khitrova, S. W. Koch, and A. Knorr, “Ultrafast ac Stark effect switching of the active photonic band gap from Bragg-periodic semiconductor quantum wells,” Appl. Phys. Lett. 81, 4332-4334 (2002). [CrossRef]
  29. S. M. Sadeghi, W. Li, and H. M. van Driel, “Coherently induced one-dimensional photonic band gap,” Phys. Rev. B 69, 073304 (2004). [CrossRef]
  30. F. Silva, J. Mompart, V. Ahufinger, and R. Corbalan, “Electromagnetically induced transparency in Doppler-broadened three-level systems with resonant standing-wave drive,” Europhys. Lett. 51, 286-292 (2000). [CrossRef]
  31. For the atomic samples considered here λc coincides, however, with the vacuum pump wave vector as the dielectric constant experienced by the pump is essentially unity.
  32. K. Riley, M. Hobson, and S. Bence, Mathematical Methods for Physics and Engineering, 3rd ed. (Cambridge U. Press, 2006).
  33. N. Ashcroft and D. Mermin, Solid State Physics (Saunders College, 1976).
  34. M. Artoni, G. La Rocca, and F. Bassani, “Resonantly absorbing one-dimensional photonic crystals,” Phys. Rev. E 72, 046604 (2005). [CrossRef]
  35. By replacing kp-->(ωp/c) and κ-->kc in Eq. in the simplified case where χ0 and χ1 are real and frequency independent, one obtains ωp2-->(kcc)2/(1+χ0∓χ1) yielding the upper and lower edge of the frequency stop band at the Brillouin zone boundary π/a. The width of such a photonic bandgap is directly proportional to χ1.
  36. M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge U. Press, 1999).
  37. The optical coherence in Eq. contributes with the two components ρ31{−1,0} while the probe polarization Pp has an expression analogous to the one for Ep in Eq. where the “forward” polarization component Pp+=ϵ0(χ0Ep++χ1Ep−) and a similar one for the “backward” component Pp−, which is obtained upon interchanging {+ ↔ −} in Pp+.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited