OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 11 — Nov. 1, 2008
  • pp: 1854–1863

Solitons in one-dimensional photonic crystals

Thawatchai Mayteevarunyoo and Boris A. Malomed  »View Author Affiliations

JOSA B, Vol. 25, Issue 11, pp. 1854-1863 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1675 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on results of a systematic analysis of spatial solitons in the model of one-dimensional photonic crystals, built as a periodic lattice of waveguiding channels, of width D, separated by empty channels of width L D . The system is characterized by its structural “duty cycle,” DC D L . In the case of the self-defocusing (SDF) intrinsic nonlinearity in the channels, one can predict new effects caused by competition between the linear trapping potential and the effective nonlinear repulsive one. Several species of solitons are found in the first two finite bandgaps of the SDF model, as well as a family of fundamental solitons in the semi-infinite gap of the system with the self-focusing nonlinearity. At moderate values of DC (such as 0.50), both fundamental and higher-order solitons populating the second bandgap of the SDF model suffer destabilization with an increase of the total power. Passing the destabilization point, the solitons assume a flat-top shape, while the shape of unstable solitons gets inverted with local maxima appearing in empty layers. In the model with narrow channels (around DC = 0.25 ), fundamental and higher-order solitons exist only in the first finite bandgap, where they are stable, despite the fact that they also feature the inverted shape.

© 2008 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.4310) Integrated optics : Nonlinear
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

ToC Category:
Photonic Crystals

Original Manuscript: July 18, 2008
Manuscript Accepted: August 22, 2008
Published: October 17, 2008

Thawatchai Mayteevarunyoo and Boris A. Malomed, "Solitons in one-dimensional photonic crystals," J. Opt. Soc. Am. B 25, 1854-1863 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, “Photonic band-gap structures,” J. Opt. Soc. Am. B 10, 283-295 (1993). [CrossRef]
  2. E. Yablonovitch, “Photonic crystals,” J. Mod. Opt. 41, 173-194 (1994). [CrossRef]
  3. T. F. Krauss and R. M. De la Rue, “Photonic crystals in the optical regime--past, present and future,” Prog. Quantum Electron. 23, 51-96 (1999). [CrossRef]
  4. M. Soljacic and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211-219 (2004). [CrossRef] [PubMed]
  5. B. Maes, P. Bienstman, and R. Baets, “Bloch modes and self-localized waveguides in nonlinear photonic crystals,” J. Opt. Soc. Am. B 22, 613-619 (2005). [CrossRef]
  6. P. S. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729-4749 (2006). [CrossRef]
  7. E. Istrate and E. H. Sargent, “Photonic crystal heterostructures and interfaces,” Rev. Mod. Phys. 78, 455-481 (2006). [CrossRef]
  8. K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101-202 (2007). [CrossRef]
  9. N. Akozbek and S. John, “Optical solitary waves in two- and three-dimensional nonlinear photonic band-gap structures,” Phys. Rev. E 57, 2287-2319 (1998). [CrossRef]
  10. C. Conti, S. Trillo, and G. Assanto, “Energy localization in photonic crystals of a purely nonlinear origin,” Phys. Rev. Lett. 85, 2502-2505 (2000). [CrossRef] [PubMed]
  11. S. F. Mingaleev, Y. S. Kivshar, and R. A. Sammut, “Long-range interaction and nonlinear localized modes in photonic crystal waveguides,” Phys. Rev. E 62, 5777-5782 (2000). [CrossRef]
  12. S. F. Mingaleev and Y. S. Kivshar, “Self-trapping and stable localized modes in nonlinear photonic crystals,” Phys. Rev. Lett. 86, 5474-5477 (2001). [CrossRef] [PubMed]
  13. A. A. Sukhorukov and Y. S. Kivshar, “Spatial optical solitons in nonlinear photonic crystals,” Phys. Rev. E 65, 036609 (2002). [CrossRef]
  14. A. A. Sukhorukov and Y. S. Kivshar, “Nonlinear guided waves and spatial solitons in a periodic layered medium,” J. Opt. Soc. Am. B 19, 772-781 (2002). [CrossRef]
  15. P. Xie, Z. Q. Zhang, and X. D. Zhang, “Gap solitons and soliton trains in finite-sized two-dimensional periodic and quasiperiodic photonic crystals,” Phys. Rev. E 67, 026607 (2003). [CrossRef]
  16. A. Ferrando, M. Zacarés, P. Fernández de Córdoba, D. Binosi, and J. A. Monsoriu, “Spatial soliton formation in photonic crystal fibers,” Opt. Express 11, 452-459 (2003). [CrossRef] [PubMed]
  17. A. Ferrando, M. Zacarés, P. Fernández de Córdoba, D. Binosi, and J. A. Monsoriu, “Vortex solitons in photonic crystal fibers,” Opt. Express 12, 817-822 (2004). [CrossRef] [PubMed]
  18. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Soliton trains in photonic lattices,” Opt. Express 12, 2831-2837 (2004). [CrossRef] [PubMed]
  19. B. Maes, P. Bienstman, and R. Baets, “Switching in coupled nonlinear photonic-crystal resonators,” J. Opt. Soc. Am. B 22, 1778-1784 (2005). [CrossRef]
  20. Y. Kominis and K. Hizanidis, “Power dependent soliton location and stability in complex photonic structures,” Opt. Express 16, 12124-12138 (2008). [CrossRef] [PubMed]
  21. N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E 66, 046602 (2002). [CrossRef]
  22. J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422, 147-150 (2003). [CrossRef] [PubMed]
  23. D. Neshev, E. Ostrovskaya, Y. Kivshar, and W. Królikowski, “Spatial solitons in optically induced gratings,” Opt. Lett. 28, 710-712 (2003). [CrossRef] [PubMed]
  24. G. Bartal, O. Manela, O. Cohen, J. W. Fleischer, and M. Segev, “Observation of second-band vortex solitons in 2D photonic lattices,” Phys. Rev. Lett. 95, 053904 (2005). [CrossRef] [PubMed]
  25. N. A. R. Bhat and J. E. Sipe, “Optical pulse propagation in nonlinear photonic crystals,” Phys. Rev. E 64, 056604 (2001). [CrossRef]
  26. D. N. Christodoulides and N. K. Efremidis, “Discrete temporal solitons along a chain of nonlinear coupled microcavities embedded in photonic crystals,” Opt. Lett. 27, 568-570 (2002). [CrossRef]
  27. J. K. S. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Y. Huang, and A. Yariv, “Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Express 12, 90-103 (2004). [CrossRef] [PubMed]
  28. B. I. Mantsyzov, I. V. Mel'nikov, and J. Stewart Aitchison, “Controlling light by light in a one-dimensional resonant photonic crystal,” Phys. Rev. E 69, 055602(R) (2004). [CrossRef]
  29. A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001). [CrossRef] [PubMed]
  30. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002). [CrossRef] [PubMed]
  31. F. Luan, J. C. Knight, P. St. J. Russell, S. Campbell, D. Xiao, D. T. Reid, B. J. Mangan, D. P. Williams, and P. J. Roberts, “Femtosecond soliton pulse delivery at 800 nm wavelength in hollow-core photonic bandgap fibers,” Opt. Express 12, 835-840 (2004). [CrossRef] [PubMed]
  32. A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95, 213902 (2005). [CrossRef] [PubMed]
  33. V. V. Konotop and V. Kuzmiak, “Simultaneous second- and third-harmonic generation in one-dimensional photonic crystals,” J. Opt. Soc. Am. B 16, 1370-1376 (1999). [CrossRef]
  34. C. De Angelis, F. Gringoli, M. Midrio, D. Modotto, J. S. Aitchison, and G. F. Nalesso, “Conversion efficiency for second-harmonic generation in photonic crystals,” J. Opt. Soc. Am. B 18, 348-351 (2001). [CrossRef]
  35. J. F. Corney and O. Bang, “Solitons in quadratic nonlinear photonic crystals,” Phys. Rev. E 64, 047601 (2001). [CrossRef]
  36. C. Kittel, Introduction to Solid State Physics (Wiley, 1995).
  37. W. Li and A. Smerzi, “Nonlinear Kronig-Penney model,” Phys. Rev. E 70, 016605 (2004). [CrossRef]
  38. B. T. Seaman, L. D. Carr, and M. J. Holland, “Nonlinear band structure in Bose-Einstein condensates: nonlinear Schrödinger equation with a Kronig-Penney potential,” Phys. Rev. A 71, 033622 (2005). [CrossRef]
  39. I. M. Merhasin, B. V. Gisin, R. Driben, and B. A. Malomed, “Finite-band solitons in the Kronig-Penney model with the cubic-quintic nonlinearity,” Phys. Rev. E 71, 016613 (2005). [CrossRef]
  40. J. Wang, F. Ye, L. Dong, T. Cai, and Y.-P. Li, “Lattice solitons supported by competing cubic-quintic nonlinearity,” Phys. Lett. A 339, 74-82 (2005). [CrossRef]
  41. B. A. Malomed, Soliton Management in Periodic Systems (Springer, 2006).
  42. J. Atai and B. A. Malomed, “Spatial solitons in a medium composed of self-focusing and self-defocusing layers,” Phys. Lett. A 298, 140-148 (2002). [CrossRef]
  43. G. L. Alfimov, V. V. Konotop, and M. Salerno, “Matter solitons in Bose-Einstein condensates with optical lattices,” Europhys. Lett. 58, 7-13 (2002). [CrossRef]
  44. B. B. Baizakov, V. V. Konotop, and M. Salerno, “Regular spatial structures in arrays of Bose-Einstein condensates induced by modulational instability,” J. Phys. B 35, 5105-5119 (2002). [CrossRef]
  45. P. J. Y. Louis, E. A. Ostrovskaya, C. M. Savage, and Y. S. Kivshar, “Bose-Einstein condensates in optical lattices: band-gap structure and solitons,” Phys. Rev. A 67, 013602 (2003). [CrossRef]
  46. H. Sakaguchi and B. A. Malomed, “Matter-wave solitons in nonlinear optical lattices,” Phys. Rev. E 72, 046610 (2005). [CrossRef]
  47. Y. Sivan, G. Fibich, and M. I. Weinstein, “Waves in nonlinear lattices: ultrashort optical pulses and Bose-Einstein condensates,” Phys. Rev. Lett. 97, 193902 (2006). [CrossRef] [PubMed]
  48. F. Abdullaev, A. Abdumalikov, and R. Galimzyanov, “Gap solitons in Bose-Einstein condensates in linear and nonlinear optical lattices,” Phys. Lett. A 367, 149-155 (2007). [CrossRef]
  49. Z. Rapti, P. G. Kevrekidis, V. V. Konotop, and C. K. R. T. Jones, “Solitary waves under the competition of linear and nonlinear periodic potentials,” J. Phys. A: Math. Theor. 40, 14151-14163 (2007). [CrossRef]
  50. T. Mayteevarunyoo and B. A. Malomed, “Stability limits for gap solitons in a Bose-Einstein condensate trapped in a time-modulated optical lattice,” Phys. Rev. A 74, 033616 (2006). [CrossRef]
  51. B. A. Malomed, Z. H. Wang, P. L. Chu, and G. D. Peng, “Multichannel switchable system for spatial solitons,” J. Opt. Soc. Am. B 16, 1197-1203 (1999). [CrossRef]
  52. N. G. Vakhitov and A. A. Kolokolov, “Stationary solutions of the wave equation in a medium with nonlinearity saturation,” Izv. Vyssh. Uchebn. Zaved., Radiofiz. 16, 10120 (1973) N. G. Vakhitov and A. A. Kolokolov,[Radiophys. Quantum Electron. 16, 783-789 (1973)]. [CrossRef]
  53. L. Bergé, “Wave collapse in physics: principles and applications to light and plasma waves,” Phys. Rep. 303, 259-370 (1998). [CrossRef]
  54. B. Deconinck, F. Kiyak, J. D. Carter, and J. N. Kutz, “SPECTRUW: a laboratory for the numerical exploration of spectra of linear operators,” Math. Comput. Simul. 74, 370-378 (2007). [CrossRef]
  55. S. Adhikari and B. A. Malomed, “Tightly bound gap solitons in a Fermi gas,” EPL 79, 50003 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited