OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 11 — Nov. 1, 2008
  • pp: 1873–1881

Modal analysis of one-dimensional nonuniform arrays of square resonators

Haroldo T. Hattori  »View Author Affiliations

JOSA B, Vol. 25, Issue 11, pp. 1873-1881 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1110 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze one-dimensional nonuniform arrays of square resonators with a size of 5 μ m . This choice of resonator size is motivated by a combination of factors such as size that gives a relatively small number of intrinsic modes, is compatible with current fabrication processes, and can deliver a reasonable amount of power without occupying a large area. In these arrays we initially change the separation between adjacent resonators by using standard functions used in specifying filter responses in the frequency domain such as binomial functions Chebyshev polynomials. We show that interesting spectral properties may appear when these functions are used. Next, we change one of the characteristic dimensions of the square resonator in a prescribed manner across the array and analyze the effect of the changes on the spectral characteristics of the arrays. In all cases, the arrays form light sources that couple light into a single-mode waveguide and their spectral characteristics are obtained after coupling into the waveguide.

© 2008 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.2020) Lasers and laser optics : Diode lasers

ToC Category:
Integrated Optics

Original Manuscript: June 23, 2008
Revised Manuscript: August 23, 2008
Manuscript Accepted: September 9, 2008
Published: October 21, 2008

Haroldo T. Hattori, "Modal analysis of one-dimensional nonuniform arrays of square resonators," J. Opt. Soc. Am. B 25, 1873-1881 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Painter, R. K. Lee, A. Scherrer, A. Yariv, J. D. O'Brien, and P. D. Dapkus, “Two-dimensional photonic bandgap defect mode laser,” Science 284, 1819-1821 (1999). [CrossRef] [PubMed]
  2. H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38, 1353-1365 (2002). [CrossRef]
  3. D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, “Single-fundamental-mode photonic crystal surface-emitting lasers,” Appl. Phys. Lett. 80, 3608-3610 (2003). [CrossRef]
  4. H. T. Hattori, C. Seassal, X. Letartre, P. Rojo-Romeo, J. L. Leclercq, P. Viktorovitch, M. Zussy, L. di Cioccio, L. El Melahoui, and J.-M. Fedeli, “Coupling analysis of heterogeneous integrated InP based photonic crystal triangular lattice band-edge lasers and silicon waveguides,” Opt. Express 13, 3510-3522 (2005). [CrossRef]
  5. R. M. Cazo, C. L. Barbosa, H. T. Hattori, and V. M. Schneider, “Steady-state analysis of a directional square lattice band-edge photonic crystal laser,” Microwave Opt. Technol. Lett. 46, 210-214 (2005). [CrossRef]
  6. H. T. Hattori, I. McKerracher, H. H. Tan, C. Jagadish, and R. M. De La Rue, “In-plane coupling of light from InP-based photonic crystal band-edge lasers into single-mode waveguides,” IEEE J. Quantum Electron. 43, 279-286 (2007). [CrossRef]
  7. H. T. Hattori, H. H. Tan, and C. Jagadish, “Optically pumped in-plane photonic crystal microcavity laser arrays coupled to waveguides,” J. Lightwave Technol. 26, 1374-1380 (2008). [CrossRef]
  8. T. Baba, “Photonic crystals and microdisk cavities based on GaInAsP/InP system,” IEEE J. Sel. Top. Quantum Electron. 3, 808-830 (1997). [CrossRef]
  9. M. Fujita, A. Sakai, and T. Baba, “Ultra-small and ultra-low threshold microdisk injection laser--design, fabrication, lasing characteristics and spontaneous emission factor,” IEEE J. Sel. Top. Quantum Electron. 5, 673-681 (1999). [CrossRef]
  10. A. F. J. Levi, R. E. Slusher, S. L. McCall, J. L. Glass, S. J. Pearton, and R. A. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett. 62, 562-563 (1993). [CrossRef]
  11. S. J. Choi, K. Djordjev, S. J. Choi, and P. D. Dapkus, “Microdisk lasers vertically coupled to output waveguides,” IEEE Photon. Technol. Lett. 15, 1330-1332 (2003). [CrossRef]
  12. S. V. Boriskina, T. M. Benson, P. D. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12, 1175-1182 (2006). [CrossRef]
  13. H. T. Hattori, C. Seassal, E. Touraille, P. Rojo-Romeo, X. Letartre, G. Hollinger, P. Viktorovitch, L. DiCioccio, M. Zussy, L. El Melhaoui, and J. M. Fedeli, “Heterogeneous integration of microdisk lasers on silicon strip waveguides for optical interconnects,” IEEE Photon. Technol. Lett. 18, 223-225 (2006). [CrossRef]
  14. H. T. Hattori, “Analysis of optically pumped equilateral triangular microlasers with three mode-selective trenches,” Appl. Opt. 47, 2178-2185 (2008). [CrossRef] [PubMed]
  15. S. Ando, N. Kobayashi, and H. Ando, “Triangular-facet lasers coupled by a rectangular optical waveguide,” Jpn. J. Appl. Phys., Part 2 36, L76-L78 (1997). [CrossRef]
  16. Y. Z. Huang, W. H. Guo, and Q. M. Wang, “Analysis and numerical simulation of eigenmode characteristics for semiconductor lasers with an equilateral triangle micro-resonator,” IEEE J. Quantum Electron. 37, 100-107 (2001). [CrossRef]
  17. Y. Z. Huang, W. H. Guo, L. J. Yu, and H. B. Lei, “Analysis of semiconductor microlasers with an equilateral triangle resonator by rate equations,” IEEE J. Quantum Electron. 37, 1259-1264 (2001). [CrossRef]
  18. Y. Z. Huang, Y. H. Hu, Q. Chen, S. J. Wang, Y. Du, and Z. C. Fan, “Room-temperature continuous-wave electrically injected InP-GaInAsP equilateral-triangle-resonator lasers,” IEEE Photon. Technol. Lett. 19, 963-965 (2007). [CrossRef]
  19. W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Mode quality factor based on far-field emission for square resonators,” IEEE Photon. Technol. Lett. 16, 479-481 (2004). [CrossRef]
  20. W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Whispering-gallery-like modes in square resonators,” IEEE J. Quantum Electron. 29, 1106-1110 (2003).
  21. C. A. Balanis, Antenna Theory: Analysis and Design, 2nd ed. (Wiley, 1997).
  22. D. M. Pozar, Microwave Engineering, 3rd edition (Wiley, 2005).
  23. Fullwave 4.0 RSOFT design group (1999), http://www.rsoftdesign.com.
  24. W. H. Guo, Y. Z. Huang, and Q. Y. Liu, “Modes in square resonators,” IEEE J. Quantum Electron. 39, 1563-1566 (2003). [CrossRef]
  25. J. E. Bowers, J. E. Bjorkholm, C. A. Burrus, L. A. Coldren, B. R. Hemenway, and D. P. Wilt, “Cleaved-coupled-cavity lasers with large cavity length ratios for enhanced stability,” Appl. Phys. Lett. 44, 821-823 (1984). [CrossRef]
  26. H. Altug, and J. Vuckovic, “Photonic crystal nanocavity array laser,” Opt. Express 13, 8819-8828 (2005). [CrossRef] [PubMed]
  27. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited