OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 12 — Dec. 1, 2008
  • pp: 1984–1987

Object distance-independent near-field subwavelength imaging of metal waveguide arrays

Zhiwen Kang and Guo Ping Wang  »View Author Affiliations


JOSA B, Vol. 25, Issue 12, pp. 1984-1987 (2008)
http://dx.doi.org/10.1364/JOSAB.25.001984


View Full Text Article

Enhanced HTML    Acrobat PDF (305 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A prism-shape microlens constructed with two-dimensional nanoscale metal waveguide arrays (MWGAs) is introduced for near-field subwavelength imaging. Finite-difference time-domain numerical simulations reveal that the microlens shows interesting object distance-independent subwavelength imaging as the object distance ranges from 100 nm to 1000 nm and the concave angle of the prism-shape lens is less than 150°. The possibility of using such microlens for array microimaging is also demonstrated. The microlens may provide potential applications in nanophotonics, lithography, and superresolution imaging.

© 2008 Optical Society of America

OCIS Codes
(220.3630) Optical design and fabrication : Lenses
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optical Devices

History
Original Manuscript: August 4, 2008
Revised Manuscript: September 15, 2008
Manuscript Accepted: September 29, 2008
Published: November 14, 2008

Citation
Zhiwen Kang and Guo Ping Wang, "Object distance-independent near-field subwavelength imaging of metal waveguide arrays," J. Opt. Soc. Am. B 25, 1984-1987 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-12-1984


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  3. N. Seddon and T. Bearpark, “Observation of the inverse Doppler effect,” Science 302, 1537-1540 (2003). [CrossRef] [PubMed]
  4. C. Luo, M. Lbanescu, G. Johnson, and J. D. Joannopoulos, “Cerenkov radiation in photonic crystals,” Science 299, 368-371 (2003). [CrossRef] [PubMed]
  5. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  6. T. Koshny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Effective medium theory of left-handed materials,” Phys. Rev. Lett. 93, 107402 (2004). [CrossRef]
  7. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788-792 (2004). [CrossRef] [PubMed]
  8. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005). [CrossRef] [PubMed]
  9. H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96, 073907 (2006). [CrossRef] [PubMed]
  10. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Negative refraction by photonic crystals,” Nature 423, 604-605 (2003). [CrossRef] [PubMed]
  11. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, 10096-10099(R) (1998). [CrossRef]
  12. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104(R) (2002). [CrossRef]
  13. P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, “Photonic crystals: imaging by flat lens using negative refraction,” Nature 426, 404 (2003). [CrossRef] [PubMed]
  14. A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two-dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902 (2004). [CrossRef] [PubMed]
  15. Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, “Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies,” Phys. Rev. Lett. 95, 153901 (2005). [CrossRef] [PubMed]
  16. Z. Y. Li and L. L. Lin, “Evaluation of lensing in photonic crystal slabs exhibiting negative refraction,” Phys. Rev. B 68, 245110 (2003). [CrossRef]
  17. X. Zhang, “Image resolution depending on slab thickness and object distance in a two-dimensional photonic-crystal-based superlens,” Phys. Rev. B 70, 195110 (2004). [CrossRef]
  18. X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration,” Phys. Rev. Lett. 97, 073901 (2006). [CrossRef] [PubMed]
  19. X. Fan and G. P. Wang, “Nanoscale metal waveguide arrays as plasmon lenses,” Opt. Lett. 31, 1322-1324 (2006). [CrossRef] [PubMed]
  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  21. H. Raether, Surface Plasmon (Springer-Verlag, 1988).
  22. H. J. Tiziani and H. M. Uhde, “Three-dimensional analysis by a microlens-array confocal arrangement,” Appl. Opt. 33, 567-572 (1994). [CrossRef] [PubMed]
  23. F. Wippermann, D. Radtke, M. Amlerg, and S. Sinzinger, “Integrated free-space optical interconnect fabricated in planar optics using chirped microlens arrays,” Opt. Express 14, 10765-10778 (2006). [CrossRef] [PubMed]
  24. J. R. Leger, M. G. Moharam, and T. K. Gaylord, “Diffractive optics: an introduction to the feature issue,” Appl. Opt. 34, 2399-2400 (1995). [CrossRef] [PubMed]
  25. J. Tan, M. Shan, J. Liu, H. Zhang, and C. Zhao, “Model analysis of effect of diffraction focus characteristics of microlens arrays on parallel laser direct writing quality,” Opt. Commun. 277, 237-240 (2007). [CrossRef]
  26. J. Lin, J. Ye, and S. Liu, “Rigorous electromagnetic analysis of dual-closed-surface microlens arrays,” Opt. Commun. 278, 232-239 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited