OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 12 — Dec. 1, 2008
  • pp: 2073–2080

Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers

Yannick Dumeige, Stéphane Trebaol, Laura Ghişa, Thi KimNgân Nguyên, Hervé Tavernier, and Patrice Féron  »View Author Affiliations

JOSA B, Vol. 25, Issue 12, pp. 2073-2080 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (775 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a simple method to determine simultaneously the main characteristics of passive or active high-Q optical resonators. The method is based on cavity ringdown spectroscopy, where the probe wavelength is rapidly swept across the resonance. It has already been shown that this technique allows the loaded cavity lifetime of passive resonators to be obtained. We show that we can also infer the coupling regime for passive resonators and the resonant gain for active resonators. The method is tested on Er 3 + doped fiber resonators and also applied to determine the intrinsic and external Q-factors of an Mg F 2 whispering gallery mode resonator.

© 2008 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(120.3940) Instrumentation, measurement, and metrology : Metrology
(230.5750) Optical devices : Resonators
(300.3700) Spectroscopy : Linewidth

ToC Category:
Optical Devices

Original Manuscript: June 19, 2008
Revised Manuscript: September 22, 2008
Manuscript Accepted: October 12, 2008
Published: November 24, 2008

Yannick Dumeige, Stéphane Trebaol, Laura Ghişa, Thi Kim Ngân Nguyên, Hervé Tavernier, and Patrice Féron, "Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers," J. Opt. Soc. Am. B 25, 2073-2080 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Vahala, Optical Microcavities (World Scientific, 2004). [CrossRef]
  2. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004). [CrossRef] [PubMed]
  3. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004). [CrossRef] [PubMed]
  4. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272-274 (2003). [CrossRef] [PubMed]
  5. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671-674 (2006). [CrossRef] [PubMed]
  6. Y. Dumeige and P. Féron, “Whispering-gallery-mode analysis of phase-matched doubly resonant second-harmonic generation,” Phys. Rev. A 74, 063804 (2006). [CrossRef]
  7. M. Sumetsky, “Optimization of optical ring resonator devices for sensing applications,” Opt. Lett. 32, 2577-2579 (2007). [CrossRef] [PubMed]
  8. M. C. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74-77 (2000). [CrossRef] [PubMed]
  9. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925-928 (2003). [CrossRef] [PubMed]
  10. J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40, 726-730 (2004). [CrossRef]
  11. B. J. J. Slagmolen, M. B. Gray, K. G. Baigent, and D. E. McClelland, “Phase-sensitive reflection technique for characterization of a Fabry-Perot interferometer,” Appl. Opt. 39, 3638-3643 (2000). [CrossRef]
  12. G. S. Pandian and F. E. Seraji, “Optical pulse response of a fiber ring resonator,” Proc. IEE 138, 235-239 (1991).
  13. G. Rempe, R. J. Thompson, H. J. Kimble, and R. Lalezari, “Measurement of ultralow losses in an optical interferometer,” Opt. Lett. 17, 363-365 (1992). [CrossRef] [PubMed]
  14. H. J. Schmitt and H. Zimmer, “Fast sweep measurements of relaxation times in superconducting cavities,” IEEE Trans. Microwave Theory Tech. MTT-14, 206-207 (1966). [CrossRef]
  15. Z. K. Ioannidis, P. M. Radmore, and I. P. Giles, “Dynamic response of an all-fiber ring resonator,” Opt. Lett. 13, 422-424 (1988). [CrossRef] [PubMed]
  16. J. Morville, D. Romanini, M. Chenevier, and A. Kachanov, “Effects of laser phase noise on the injection of a high-finesse cavity,” Appl. Opt. 41, 6980-6990 (2002). [CrossRef] [PubMed]
  17. G. Ying, H. Ma, and Z. Jin, “Ringing phenomenon of the fiber ring resonator,” Appl. Opt. 46, 4890-4895 (2007). [CrossRef] [PubMed]
  18. Z. Li, R. G. T. Bennett, and G. E. Stedman, “Swept-frequency induced optical cavity ringing,” Opt. Commun. 86, 51-57 (1991). [CrossRef]
  19. J. Poirson, F. Bretenaker, M. Vallet, and A. Le Floch, “Analytical and experimental study of ringing effects in a Fabry-Perot cavity. Application to the measurement of high finesses,” J. Opt. Soc. Am. B 14, 2811-2817 (1997). [CrossRef]
  20. M. J. Lawrence, B. Willke, M. E. Husman, E. K. Gustafson, and R. L. Byer, “Dynamic response of a Fabry-Perot interferometer,” J. Opt. Soc. Am. B 16, 523-532 (1999). [CrossRef]
  21. L. Matone, M. Barsuglia, F. Bondu, F. Cavalier, H. Heitmann, and N. Man, “Finesse and mirror speed measurement for a suspended Fabry-Perot cavity using the ringing effect,” Phys. Lett. A 271, 314-318 (2000). [CrossRef]
  22. A. A. Savchenkov, A. B. Matsko, M. Mohageg, and L. Maleki, “Ringdown spectroscopy of stimulated Raman scattering in a whispering gallery mode resonator,” Opt. Lett. 32, 497-499 (2007). [CrossRef] [PubMed]
  23. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15, 6768-6773 (2007). [CrossRef] [PubMed]
  24. J. W. Hahn, Y. S. Yoo, J. Y. Lee, J. W. Kim, and H.-W. Lee, “Cavity ringdown spectroscopy with a continuous-wave laser: calculation of coupling efficiency and a new spectrometer design,” Appl. Opt. 38, 1859-1866 (1999). [CrossRef]
  25. Y. He and B. J. Orr, “Ringdown and cavity-enhanced absorption spectroscopy using a continuous-wave tunable diode laser and a rapidly swept optical cavity,” Chem. Phys. Lett. 319, 131-137 (2000). [CrossRef]
  26. Y. He and B. J. Orr, “Continuous-wave cavity ringdown absorption spectroscopy with a swept-frequency laser: rapid spectral sensing of gas-phase molecules,” Appl. Opt. 44, 6752-6761 (2005). [CrossRef] [PubMed]
  27. R. Loudon, M. Harris, and T. J. Shepherd, “Laser-amplifier gain and noise,” Phys. Rev. A 48, 681-701 (1993). [CrossRef] [PubMed]
  28. J. M. Choi, R. K. Lee, and A. Yariv, “Control of critical coupling in a ring resonator-fiber configuration: application to wavelength-selective switching, modulation, amplification, and oscillation,” Opt. Lett. 26, 1236-1238 (2001). [CrossRef]
  29. K. Totsuka and M. Tomita, “Optical microsphere amplification system,” Opt. Lett. 32, 3197-3199 (2007). [CrossRef] [PubMed]
  30. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321-322 (2001). [CrossRef]
  31. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  32. L. F. Stokes, M. Chodorow, and H. J. Shaw, “All-single-mode fiber resonator,” Opt. Lett. 7, 288-290 (1982). [CrossRef] [PubMed]
  33. B. Crosignani, A. Yariv, and P. Di Porto, “Time-dependent analysis of a fiber-optic passive-loop resonator,” Opt. Lett. 11, 251-253 (1986). [CrossRef] [PubMed]
  34. J. T. Kringlebotn, P. R. Morkel, C. N. Pannell, D. N. Payne, and R. I. Lamimg, “Amplified fibre delay line with 27000 recirculations,” Electron. Lett. 28, 201-202 (1992). [CrossRef]
  35. T. Tanabe, M. Notomi, E. Kuramochi, and H. Taniyama, “Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities,” Opt. Express 15, 7826-7839 (2007). [CrossRef] [PubMed]
  36. G. Stewart, K. Atherton, H. Yu, and B. Culshaw, “An investigation of an optical fibre amplifier loop for intra-cavity and ring-down cavity loss measurements,” Meas. Sci. Technol. 12, 843-849 (2001). [CrossRef]
  37. S. Minin, M. R. Fisher, and S. L. Chuang, “Current-controlled group delay using a semiconductor Fabry-Perot amplifier,” Appl. Phys. Lett. 84, 3238-3240 (2004). [CrossRef]
  38. H. Chang and D. D. Smith, “Gain-assisted superluminal propagation in coupled optical resonators,” J. Opt. Soc. Am. B 22, 2237-2241 (2005). [CrossRef]
  39. Y. Dumeige, T. K. N. Nguyen, L. Ghisa, S. Trebaol, and P. Féron, “Measurement of the dispersion induced by a slow-light system based on coupled active resonator induced transparency,” Phys. Rev. A 78, 013818 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited