OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 12 — Dec. 1, 2008
  • pp: 2116–2122

Plasmonic ring resonator

Nahid Talebi, Ata Mahjoubfar, and Mahmoud Shahabadi  »View Author Affiliations

JOSA B, Vol. 25, Issue 12, pp. 2116-2122 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (867 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A ring resonator composed of a plasmonic waveguide is presented. For the plasmonic waveguide, an array of silver nanorods is assumed. To determine the modes of this ring resonator, the generalized multipole technique (GMT) is used. Using this analysis, we obtain various modes of the proposed ring resonator. The mode field and the corresponding quality factor of each mode of the ring resonator is computed. The results are compared with those obtained using the finite-element method (FEM) and the finite-difference time domain (FDTD) method.

© 2008 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(240.6680) Optics at surfaces : Surface plasmons
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optical Devices

Original Manuscript: May 19, 2008
Revised Manuscript: September 29, 2008
Manuscript Accepted: October 3, 2008
Published: November 26, 2008

Nahid Talebi, Ata Mahjoubfar, and Mahmoud Shahabadi, "Plasmonic ring resonator," J. Opt. Soc. Am. B 25, 2116-2122 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Ausseneg, “Electromagnetic field transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331-1333 (1998). [CrossRef]
  2. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356-R16359 (2000). [CrossRef]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824-830 (2003). [CrossRef]
  4. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel,B. Koel, and A. A. G. ReQuicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguide,” Nature 2, 229-232 (2003). [CrossRef]
  5. B. Pradarutti, C. Rau, G. Torosyan, R. Beigang, and K. Kawase, “Plasmonic response in a one-dimensional periodic structures of metallic rods,” Appl. Phys. Lett. 87, 204105 (2005). [CrossRef]
  6. H. Chu, W. Ewe, E. Li, and R. Vahldieck, “Analysis of sub-wavelength light propagation through long double-chain nanowires with funnel feeding,” Opt. Express 15, 4216-4223 (2007). [CrossRef] [PubMed]
  7. N. Talebi and M. Shahabadi, “Analysis of the propagation of light along an array of nanorods using the generalized multipole technique,” J. Comput. Theor. Nanosci. 4, 711-716 (2008). [CrossRef]
  8. G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag And Au nanowire grating,” Appl. Phys. 90, 3825-3830 (2001).
  9. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590-2593 (1999). [CrossRef]
  10. C. Hagness, T. Rafizadeh, T. Ho, and A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ting and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154-2165 (1997). [CrossRef]
  11. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998-1005 (1997). [CrossRef]
  12. N. Talebi, M. Shahabadi, and C. Hafner, “Analysis of a lossy microring resonator using generalized multipole technique,” PIER 66, 287-299 (2006). [CrossRef]
  13. B. Liu, A. Shakouri, and J. E. Bowers, “Wide tuneable double ring resonator coupled lasers,” IEEE Photonics Technol. Lett. 14, 600-602 (2002). [CrossRef]
  14. S. Deng, W. Cai, and V. N. Astratov, “Numerical study of light propagation via whispering gallery modes in microcylinder coupled resonator optical waveguides,” Opt. Express 12, 6468-6480 (2004). [CrossRef] [PubMed]
  15. C. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech House, 1990).
  16. C. Rockstuhl, M. G. Salt, and H. P. Herzig, “Application of the boundary-element method to the interaction of light with single and coupled metallic nanoparticles,” J. Opt. Soc. Am. A 20, 1969-1973 (2003). [CrossRef]
  17. E. Cottancin, G. Celep, J. Lerme, M. Pellarin, J. R. Hunzinger, J. L. Vialle, and M. Broyer, “Optical properties of noble metal clusters as a function of size: comparison between experiments and a semi-quantal theory,” Theor. Chem. Acc. 116, 514-523 (2006). [CrossRef]
  18. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited