OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 12 — Dec. 1, 2008
  • pp: 2140–2150

Applications of the optical fiber to the generation and measurement of low-phase-noise microwave signals

Kirill Volyanskiy, Johann Cussey, Hervé Tavernier, Patrice Salzenstein, Gérard Sauvage, Laurent Larger, and Enrico Rubiola  »View Author Affiliations


JOSA B, Vol. 25, Issue 12, pp. 2140-2150 (2008)
http://dx.doi.org/10.1364/JOSAB.25.002140


View Full Text Article

Enhanced HTML    Acrobat PDF (844 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The optical fiber used as a microwave delay line exhibits high stability and low noise and makes accessible a long delay ( 100 μ s ) in a wide bandwidth ( 40 GHz , limited by the optronic components). Hence, it finds applications as the frequency reference in microwave oscillators and as the reference discriminator for the measurement of phase noise. The fiber is suitable to measure the oscillator stability with a sensitivity of parts in 10 12 . Enhanced sensitivity is obtained with two independent delay lines, after correlating and averaging. Short-term stability of parts in 10 12 is achieved inserting the delay line in an oscillator. The frequency can be set in steps multiple of the inverse delay, which is in the 10 100 kHz region. We add to the available references a considerable amount of engineering and practical knowledge, the understanding of 1 f noise, calibration, the analysis of the cross-spectrum technique to reduce the instrument background, the phase-noise model of the oscillator, and the experimental test of the oscillator model.

© 2008 Optical Society of America

OCIS Codes
(000.3110) General : Instruments, apparatus, and components common to the sciences
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(350.4010) Other areas of optics : Microwaves
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: July 29, 2008
Revised Manuscript: September 23, 2008
Manuscript Accepted: September 30, 2008
Published: November 26, 2008

Citation
Kirill Volyanskiy, Johann Cussey, Hervé Tavernier, Patrice Salzenstein, Gérard Sauvage, Laurent Larger, and Enrico Rubiola, "Applications of the optical fiber to the generation and measurement of low-phase-noise microwave signals," J. Opt. Soc. Am. B 25, 2140-2150 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-12-2140


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W.S. C.Chang, ed., RF Photonic Technology in Optical Fiber Links (Cambridge U. Press2002). [CrossRef]
  2. T. A. Yilmaz, C. M. Depriest, A. Braun, J. Abeles, and P. J. Delfyett, “Noise in fundamental and harmonic modelocked semiconductor lasers: experiments and simulations,” IEEE J. Quantum Electron. 39, 838-849 (2003). [CrossRef]
  3. D. J. Jones, K. W. Holman, M. Notcutt, J. Ye, J. Chandalia, L. A. Jiang, E. P. Ippen, and H. Yokoyama, “Ultralow-jitter, 1550-nm mode-locked semiconductor laser synchronized to a visible optical frequency standard,” Opt. Lett. 28, 813-815 (2003). [CrossRef] [PubMed]
  4. X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13, 1725-1735 (1996). [CrossRef]
  5. X. S. Yao, L. Davis, and L. Maleki, “Coupled optoelectronic oscillators for generating both RF signal and optical pulses,” J. Lightwave Technol. 18, 73-78 (2000). [CrossRef]
  6. K. J. Vahala, “Optical microcavities,” Nature 424, 839-846 (2003). [CrossRef] [PubMed]
  7. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004). [CrossRef] [PubMed]
  8. A. A. Savchenkov, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Low threshold optical oscillations in a whispering gallery mode caf2 resonato,” Phys. Rev. Lett. 93, 1-4 (2004). [CrossRef]
  9. S. T. Cundiff and J. Ye, “Colloquium: femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325-342 (2003). [CrossRef]
  10. E. Rubiola, E. Salik, S. Huang, and L. Maleki, “Photonic delay technique for phase noise measurement of microwave oscillators,” J. Opt. Soc. Am. B 22, 987-997 (2005). [CrossRef]
  11. V. Giordano, P.-Y. Bourgeois, Y. Gruson, N. Boubekeur, R. Boudot, E. Rubiola, N. Bazin, and Y. Kersalé, “New advances in ultra-stable microwave oscillators,” Eur. Phys. J.: Appl. Phys. 32, 133-141 (2005). [CrossRef]
  12. E. Salik, N. Yu, L. Maleki, and E. Rubiola, “Dual photonic-delay-line cross correlation method for the measurement of microwave oscillator phase noise,” in Proceedings of the European Frequency Time Forum and Frequency Control Symposium Joint Meeting (2004), pp. 303-306.
  13. J. Rutman, “Characterization of phase and frequency instabilities in precision frequency sources: fifteen years of progress,” Proc. IEEE 66, 1048-1075 (1978). [CrossRef]
  14. H.G.Kimball, ed., Handbook of Selection and Use of Precise Frequency and Time Systems (ITU, 1997).
  15. CCIR Study Group VII, Characterization of Frequency and Phase Noise, Report No. 580-3, in Standard Frequencies and Time Signals, Vol. VII (annex) of Recommendations and Reports of the CCIR (International Telecommunication Union, 1990), pp. 160-171.
  16. J. R. Vig (chair.), IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and Time Metrology-Random Instabilities IEEE Standard1139-1999 (IEEE, 1999).
  17. J. Vanier and C. Audoin, The Quantum Physics of Atomic Frequency Standards (Hilger, 1989). [CrossRef]
  18. E. Rubiola, “The Leeson effect,” arXiv:physics/0502143v1, web site arxiv.org (2005). Abridged draft version of .
  19. E. Rubiola, Phase Noise and Frequency Stability in Oscillators (Cambridge U. Press, 2008). [CrossRef]
  20. Y. K. Chembo, K. Volyanskiy, L. Larger, E. Rubiola, and P. Colet, “Determination of phase noise spectra in optoelectronic microwave oscillators: a phase diffusion approach,” J. Quantum Electron. (to be published).
  21. D. Eliyahu and L. Maleki, “Low phase noise and spurious level in multi-loop opto-electronic oscillators,” in Proceedings of the European Frequency Time Forum and Frequency Control Symposium Joint Meeting (2003), pp. 405-410.
  22. H. T. Friis, “Noise figure of radio receivers,” Proc. IRE 32, 419-422 (1944). [CrossRef]
  23. D. Halford, A. E. Wainwright, and J. A. Barnes, “Flicker noise of phase in RF amplifiers: characterization, cause, and cure,” (Abstract) in Proceedings of Freqency Control Symposium (1968), pp. 340-341.
  24. F. L. Walls, E. S. Ferre-Pikal, and S. R. Jefferts, “Origin of 1/f PM and AM noise in bipolar junction transistor amplifiers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 326-334 (1997). [CrossRef] [PubMed]
  25. A. Hati, D. Howe, D. Walker, and F. Walls, “Noise figure vs. PM noise measurements: a study at microwave frequencies,” in Proceedings of the European Freqency Time Forum and Freqency Control Symposium Joint Meeting (2003).
  26. E. Rubiola and R. Boudot, “1/f noise of RF and microwave amplifiers,” available soon on http://arxiv.org.
  27. R. Boudot, “Oscillateurs micro-onde à haute pureté spectrale,” Ph.D. dissertation (Université de Franche Comté, 2006).
  28. W. Shieh, X. S. Yao, L. Maleki, and G. Lutes, “Phase-noise characterization of optoelectronic components by carrier suppression techniques,” in Proceedings of the Optical Fiber Communication (OFC) Conference (1998), pp. 263-264.
  29. W. Shieh and L. Maleki, “Phase noise characterization by carrier suppression techniques in RF photonic systems,” IEEE Photon. Technol. Lett. 17, 474-476 (2005). [CrossRef]
  30. E. Rubiola, E. Salik, N. Yu, and L. Maleki, “Flicker noise in high-speed p-i-n photodiodes,” IEEE Trans. Microwave Theory Tech. 54, 816-820 (2006). [CrossRef]
  31. E. Rubiola, V. Giordano, and J. Groslambert, “Very high frequency and microwave interferometric PM and AM noise measurements,” Rev. Sci. Instrum. 70, 220-225 (1999). [CrossRef]
  32. P. Salzenstein, J. Cussey, X. Jouvenceau, H. Tavernier, L. Larger, E. Rubiola, and G. Sauvage, “Realization of a phase noise measurement bench using cross correlation and double optical delay line,” Acta Phys. Pol. A 112, 1107-1111 (2007).
  33. E. Rubiola and V. Giordano, “Correlation-based phase noise measurements,” Rev. Sci. Instrum. 71, 3085-3091 (2000). [CrossRef]
  34. E. Rubiola and V. Giordano, “Advanced interferometric phase and amplitude noise measurements,” Rev. Sci. Instrum. 73, 2445-2457 (2002). [CrossRef]
  35. E. Rubiola and F. Lardet-Vieudrin, “Low flicker-noise amplifier for 50 Ω sources,” Rev. Sci. Instrum. 75, 1323-1326 (2004). [CrossRef]
  36. R. Brendel, G. Marianneau, and J. Ubersfeld, “Phase and amplitude modulation effects in a phase detector using an incorrectly balanced mixer,” IEEE Trans. Instrum. Meas. 26, 98-102 (1977). [CrossRef]
  37. G. Cibiel, M. Régis, E. Tournier, and O. Llopis, “AM noise impact on low level phase noise measurements,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 784-788 (2002). [CrossRef] [PubMed]
  38. E. Rubiola and R. Boudot, “The effect of AM noise on correlation phase noise measurements,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 926-932 (2007). [CrossRef] [PubMed]
  39. K. Volyanskiy and L. Larger, Quadrature Stabilization in the Opto-Electronic Phase-Noise Measurement System by Laser Tuning, FEMTO-ST internal report (FEMTO-ST, 2008), personal communication.
  40. Elisa--Technical Notes of the ESA Cryo Project, Series of FEMTO-ST and ESA internal reports (FEMTO-ST, 2007-2008).
  41. “Analog devices AD9854 DDS,” http://www.analog.com/.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited