OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 12 — Dec. 1, 2008
  • pp: C127–C135

Enhancement of dispersion modulation in nanoscale waveguides

Alexander A. Govyadinov and Viktor A. Podolskiy  »View Author Affiliations


JOSA B, Vol. 25, Issue 12, pp. C127-C135 (2008)
http://dx.doi.org/10.1364/JOSAB.25.00C127


View Full Text Article

Enhanced HTML    Acrobat PDF (620 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analyze the behavior of group and phase velocities in optical waveguides supporting strongly confined propagating modes. We discuss the implications of material absorption for electromagnetic properties of nanoguides and develop an analytical description of the interplay between geometry-induced and materials-induced dispersions. In the limit of strong confinement, the phase velocity of waveguide modes becomes vanishingly small, while group velocity can be modulated from negative to positive values. The modulation of group velocity is enhanced by the factor of λ 2 R 2 with respect to macroscopic systems. Both slow- and fast-light regimes can be achieved in the same nanoguiding structure, and dynamical switching between the two regimes is possible. Applications of the developed formalism lie in the field of ultrafast active nanophotonics.

© 2008 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.2030) Physical optics : Dispersion
(160.3918) Materials : Metamaterials

ToC Category:
Slow Light in Coupled Resonators and Waveguides

History
Original Manuscript: April 16, 2008
Revised Manuscript: July 25, 2008
Manuscript Accepted: August 29, 2008
Published: October 22, 2008

Citation
Alexander A. Govyadinov and Viktor A. Podolskiy, "Enhancement of dispersion modulation in nanoscale waveguides," J. Opt. Soc. Am. B 25, C127-C135 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-12-C127


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Maier, P. Kik, H. Atwater, S. Meltzer, E. Harel, B. Koel, and A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mater. 2, 229-232 (2003). [CrossRef]
  2. S. Bozhevolnyi, V. Volkov, and K. Leosson, “Localization and waveguiding of surface plasmon polaritons in random nanostructures,” Phys. Rev. Lett. 89, 186801 (2002). [CrossRef] [PubMed]
  3. M. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004). [CrossRef] [PubMed]
  4. A. Govyadinov and V. A. Podolskiy, “Meta-material photonic funnels for sub-diffraction light compression and propagation,” Phys. Rev. B 73, 155108 (2006). [CrossRef]
  5. A. M. Steinberg and R. Y. Chiao, “Dispersionless, highly superluminal propagation in a medium with a gain doublet,” Phys. Rev. A 49, 2071-2075 (1994). [CrossRef] [PubMed]
  6. M. Bigelow, N. Lepeshkin, and R. Boyd, Science 301, 200-202 (2003). [CrossRef] [PubMed]
  7. L. Deng and M. Payne, “Gain-assisted large and rapidly responding kerr effect using a room-temperature active raman gain medium,” Phys. Rev. Lett. 98, 253902 (2007). [CrossRef] [PubMed]
  8. A. Kapitonov and V. Astratov, “Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities,” Opt. Lett. 32, 409-411 (2007). [CrossRef] [PubMed]
  9. L. Landau, E. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, Vol. 8 of Landau and Lifshitz Course of Theoretical Physics2nd ed. (Reed, 1984)
  10. P. Palinginis, S. Crankshaw, F. Sedgwick, E. Kim, M. Moewe, C. Chang-Hasnain, H. Wang, and S. Chuang, “Ultraslow light (<200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 171102 (2005). [CrossRef]
  11. J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).
  12. I. Avrutsky, I. Salakhutdinov, J. Elser, and V. A. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B 75, 241402(R) (2007). [CrossRef]
  13. L. Alekseyev and E. Narimanov, “Slow light and 3d imaging with non-magnetic negative index systems,” Opt. Express 14, 11184-11193 (2006). [CrossRef] [PubMed]
  14. F. Xia, L. Sekaric, Y. Vlasov, “Subcompact optical buffers on a silicon chip,” Nat. Phot. 1, 65-71 (2007). [CrossRef]
  15. J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,”Phys. Rev. B 76, 245403 (2007). [CrossRef]
  16. L. Novotny, “Effective wavelength scaling for optical antennas,”Phys. Rev. Lett. 98, 266802 (2007). [CrossRef] [PubMed]
  17. T. Klar, M. Perner, S. Grosse, G. von Plessen, and W. Spirkl, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249-4252 (1998). [CrossRef]
  18. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005). [CrossRef] [PubMed]
  19. J. B. Jackson and N. J. Halas, “Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates,” Proc. Natl. Acad. Sci. U.S.A. 101, 17930 (2004). [CrossRef] [PubMed]
  20. W. E. Moerner and L. Kador, “Optical detection and spectroscopy of single molecules in a solid,” Phys. Rev. Lett. 62, 2535-2538 (1989). [CrossRef] [PubMed]
  21. A. Karalis, E. Lidorikis, M. Ibanescu, J. Joannopoulos, and M. Soljačić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005). [CrossRef] [PubMed]
  22. A. Govyadinov and V. A. Podolskiy, “Gain-assisted slow to superluminal group velocity management in nano-waveguides,” Phys. Rev. Lett. 97, 223902 (2006). [CrossRef] [PubMed]
  23. V. Shalaev, “Optical negative-index metamaterials,” Nature Photonics 1, 41-48 (2007). [CrossRef]
  24. A. Hoffman, A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl “Negative refraction in semiconductor metamaterials,” Nature Mater. 6, 946-950 (2007). [CrossRef]
  25. V. A. Podolskiy and E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71, 201101(R) (2005). [CrossRef]
  26. J. Elser, A. A. Govyadinov, I. Avrustky, I. Salakhutdinov, and V. A. Podolskiy “Plasmonic nanolayer composites: coupled plasmon polaritons, effective-medium response, and subdiffraction light manipulation,” J. Nanomaterials 2007, 79469 (2007).
  27. As shown in Ref. , the solution of Eq. can be approximated with logarithmic precision as x0≃−2ε2/ε1/(ln−4ε1/ε2−γ) with γ≃0.577 being Euler's constant
  28. C. Kittel, Introduction to Solid State Physics (Wiley, 2004).
  29. V. M. Agranovich and T. A. Leskova, “Diffraction methods in the spectroscopy of thin films in the vicinity of resonances,” Progress in Surf. Sci. 29, 169-327 (1988).
  30. I. Pockrand, A. Brillante, and D. Mobius, “Exciton-surface plasmon coupling: an experimental investigation,” J. Chem. Phys. 77, 6289-9295 (1982). [CrossRef]
  31. E. Sonnenschein, I. Rutkevich, and D. Censor, “Wave packets, rays, and the role of real group velocity in absorbing media,” Phys. Rev. E 57, 1005-1016 (1998). [CrossRef]
  32. Im[vg] may also lead to pulse reshaping
  33. V. Agranovich, Y. Shen, R. Baughman, and A. Zakhidov, “Optical bulk and surface waves with negative refraction,” J. Lumin. 110, 167-173 (2004). [CrossRef]
  34. I. Smolyaninov, Y. Hung, and C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699-1701 (2007). [CrossRef] [PubMed]
  35. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  36. A. A. Govyadinov, V. A. Podolskiy, and M. A. Noginov, “Active metamaterials: sign of refraction index and gain-assisted dispersion management,” Appl. Phys. Lett. 91, 191103 (2007). [CrossRef]
  37. M. McCall, A. Lakhtakia, and W. Weiglhofer, “The negative index of refraction demystified,” Eur. J. Phys. 23, 353-359 (2002). [CrossRef]
  38. J. Peatross, S. A. Glasgow, and M. Ware, “Average energy flow of optical pulses in dispersive media,” Phys. Rev. Lett. 84, 2370-2373 (2000). [CrossRef] [PubMed]
  39. E. Bolda, J. Garrison, and R. Chiao, “Optical pulse propagation at negative group velocities due to nearby gain line,” Phys. Rev. A 49, 2938-2947 (1994). [CrossRef] [PubMed]
  40. G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backward pulse propagation through a medium with a negative group velocity,” Science 312, 895-897 (2006). [CrossRef] [PubMed]
  41. J. Seidel, S. Grafstrom, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94, 177401 (2005). [CrossRef] [PubMed]
  42. M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, Opt. Lett. 31, 3022-3024 (2006). [CrossRef] [PubMed]
  43. A. E. Siegman, Lasers (University Science Books, 1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited