OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 12 — Dec. 1, 2008
  • pp: C15–C22

Nonlinear switching and reshaping of slow-light pulses in Bragg-grating couplers

Sangwoo Ha and Andrey A. Sukhorukov  »View Author Affiliations

JOSA B, Vol. 25, Issue 12, pp. C15-C22 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (756 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the propagation and switching of slow-light pulses in nonlinear directional couplers composed of two parallel waveguides, where each waveguide contains a Bragg grating. We show that by optimizing the phase shift between the Bragg gratings, one can obtain specific dispersion characteristics enabling all-optical pulse manipulation in space and in time. We demonstrate that the power-controlled nonlinear self-action of light can be used to compensate dispersion-induced broadening of pulses through the formation of gap solitons, to control pulse switching in the coupler, and to tune the propagation velocity. We also confirm that the switching is tolerant to deviations of the phase shift from the optimal value, which can occur in the fabrication process.

© 2008 Optical Society of America

OCIS Codes
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(230.4320) Optical devices : Nonlinear optical devices

ToC Category:
Slow Light in Coupled Resonators and Waveguides

Original Manuscript: April 17, 2008
Revised Manuscript: June 23, 2008
Manuscript Accepted: June 27, 2008
Published: August 26, 2008

Sangwoo Ha and Andrey A. Sukhorukov, "Nonlinear switching and reshaping of slow-light pulses in Bragg-grating couplers," J. Opt. Soc. Am. B 25, C15-C22 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65-69 (2005). [CrossRef] [PubMed]
  2. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005). [CrossRef] [PubMed]
  3. R. S. Jacobsen, A. V. Lavrinenko, L. H. Frandsen, C. Peucheret, B. Zsigri, G. Moulin, J. Fage Pedersen, and P. I. Borel, “Direct experimental and numerical determination of extremely high group indices in photonic crystal waveguides,” Opt. Express 13, 7861-7871 (2005). [CrossRef] [PubMed]
  4. M. Soljacic, S. G. Johnson, S. H. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19, 2052-2059 (2002). [CrossRef]
  5. B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, “Bragg solitons in the nonlinear Schrodinger limit: experiment and theory,” J. Opt. Soc. Am. B 16, 587-599 (1999). [CrossRef]
  6. J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2, 775-780 (2006). [CrossRef]
  7. J. T. Mok, M. Ibsen, C. M. de Sterke, and B. J. Eggleton, “Dispersionless slow light with 5-pulse-width delay in fibre Bragg grating,” Electron. Lett. 43, 1418-1419 (2007). [CrossRef]
  8. R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express 14, 1658-1672 (2006). [CrossRef] [PubMed]
  9. S. M. Jensen, “The nonlinear coherent coupler,” IEEE Trans. Microwave Theory Tech. MTT-30, 1568-1571 (1982). [CrossRef]
  10. A. A. Maier, “Optical transistors and bistable elements on the basis of non-linear transmission of light by the systems with unidirectional coupled waves,” Kvantovaya Elektron. (Moscow) 9, 2296-2302 (1982) A. A. Maier,(in Russian) [IEEE J. Quantum Electron. 12, 1490-1494 (1982)].
  11. S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, and P. W. Smith, “Ultrafast all-optical switching in a dual-core fiber nonlinear coupler,” Appl. Phys. Lett. 51, 1135-1137 (1987). [CrossRef]
  12. S. S. Orlov, A. Yariv, and S. VanEssen, “Coupled-mode analysis of fiber-optic add-drop filters for dense wavelength-division multiplexing,” Opt. Lett. 22, 688-690 (1997). [CrossRef] [PubMed]
  13. G. Perrone, M. Laurenzano, and I. Montrosset, “Design and feasibility analysis of an innovative integrated grating-assisted add-drop multiplexer,” J. Lightwave Technol. 19, 1943-1948 (2001). [CrossRef]
  14. S. Tomljenovic Hanic and J. D. Love, “Symmetry-selective reflection gratings,” J. Opt. Soc. Am. A 22, 1615-1619 (2005). [CrossRef]
  15. M. Aslund, J. Canning, L. Poladian, C. M. de Sterke, and A. Judge, “Antisymmetric grating coupler: experimental results,” Appl. Opt. 42, 6578-6583 (2003). [CrossRef] [PubMed]
  16. J. M. Castro, D. F. Geraghty, S. Honkanen, C. M. Greiner, D. Iazikov, and T. W. Mossberg, “Optical add-drop multiplexers based on the antisymmetric waveguide Bragg grating,” Appl. Opt. 45, 1236-1243 (2006). [CrossRef] [PubMed]
  17. M. Imai and S. Sato, “Optical switching devices using nonlinear fiber-optic grating coupler,” in Photonics Based on Wavelength Integration and Manipulation, Vol. 2 of IPAP Books, K.Tada, T.Suhara, K.Kikuchi, Y.Kokubun, K.Utaka, M.Asada, F.Koyama, and T.Arakawa, eds. (Institute of Pure and Applied Physics, 2005), pp. 293-302.
  18. W. C. K. Mak, P. L. Chu, and B. A. Malomed, “Solitary waves in coupled nonlinear waveguides with Bragg gratings,” J. Opt. Soc. Am. B 15, 1685-1692 (1998). [CrossRef]
  19. W. C. K. Mak, B. A. Malomed, and P. L. Chu, “Symmetric and asymmetric solitons in linearly coupled Bragg gratings,” Phys. Rev. E 69, 066610 (2004). [CrossRef]
  20. A. Gubeskys and B. A. Malomed, “Solitons in a system of three linearly coupled fiber gratings,” Eur. Phys. J. D 28, 283-299 (2004). [CrossRef]
  21. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1988).
  22. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  23. W. Chen and D. L. Mills, “Gap solitons and the nonlinear optical-response of superlattices,” Phys. Rev. Lett. 58, 160-163 (1987). [CrossRef] [PubMed]
  24. C. M. de Sterke and J. E. Sipe, “Gap solitons,” in Progress in Optics, E.Wolf, ed. (North-Holland, 1994), Vol. 33, pp. 203-260.
  25. Yu. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, 2003).
  26. S. Ha, A. A. Sukhorukov, and Yu. S. Kivshar, “Slow-light switching in nonlinear Bragg-grating couplers,” Opt. Lett. 32, 1429-1431 (2007). [CrossRef] [PubMed]
  27. P. Millar, R. M. De la Rue, T. F. Krauss, J. S. Aitchison, N. G. R. Broderick, and D. J. Richardson, “Nonlinear propagation effects in an AlGaAs Bragg grating filter,” Opt. Lett. 24, 685-687 (1999). [CrossRef]
  28. M. Shokooh Saremi, V. G. Ta'eed, N. J. Baker, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, “High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer,” J. Opt. Soc. Am. B 23, 1323-1331 (2006). [CrossRef]
  29. Z. S. Yang, N. H. Kwong, R. Binder, and A. L. Smirl, “Distortionless light pulse delay in quantum-well Bragg structures,” Opt. Lett. 30, 2790-2792 (2005). [CrossRef] [PubMed]
  30. A. Yu. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866-4868 (2004). [CrossRef]
  31. D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13, 9398-9408 (2005). [CrossRef] [PubMed]
  32. J. B. Khurgin, “Expanding the bandwidth of slow-light photonic devices based on coupled resonators,” Opt. Lett. 30, 513-515 (2005). [CrossRef] [PubMed]
  33. A. Figotin and I. Vitebskiy, “Slow light in photonic crystals,” Waves Random Complex Media 16, 293-382 (2006). [CrossRef]
  34. L. H. Frandsen, A. V. Lavrinenko, J. Fage Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444-9450 (2006). [CrossRef] [PubMed]
  35. M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15, 219-226 (2007). [CrossRef] [PubMed]
  36. S. C. Huang, M. Kato, E. Kuramochi, C. P. Lee, and M. Notomi, “Time-domain and spectral-domain investigation of inflection-point slow-light modes in photonic crystal coupled waveguides,” Opt. Express 15, 3543-3549 (2007). [CrossRef] [PubMed]
  37. T. Baba and D. Mori, “Slow light engineering in photonic crystals,” J. Phys. D 40, 2659-2665 (2007). [CrossRef]
  38. A. A. Sukhorukov and Yu. S. Kivshar, “Slow-light optical bullets in arrays of nonlinear Bragg-grating waveguides,” Phys. Rev. Lett. 97, 233901 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited