OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 12 — Dec. 1, 2008
  • pp: C31–C38

Information theoretic framework for the analysis of a slow-light delay device

Mark A. Neifeld and Myungjun Lee  »View Author Affiliations


JOSA B, Vol. 25, Issue 12, pp. C31-C38 (2008)
http://dx.doi.org/10.1364/JOSAB.25.000C31


View Full Text Article

Enhanced HTML    Acrobat PDF (200 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a framework for the information theoretic analysis of slow-light devices. We employ a model in which the device input is a binary-valued data sequence and the device output is considered within a window of finite duration. We use the mutual information between these two quantities to measure information content. This approach enables the information theoretic definitions of delay and throughput. We use our new framework to analyze a delay device based on stimulated Brillouin scattering (SBS) and find good agreement with previous SBS delay bounds.

© 2008 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(200.3050) Optics in computing : Information processing
(260.2030) Physical optics : Dispersion
(290.5900) Scattering : Scattering, stimulated Brillouin

ToC Category:
Analysis and Applications of Slow Light

History
Original Manuscript: April 15, 2008
Revised Manuscript: July 9, 2008
Manuscript Accepted: July 16, 2008
Published: September 8, 2008

Citation
Mark A. Neifeld and Myungjun Lee, "Information theoretic framework for the analysis of a slow-light delay device," J. Opt. Soc. Am. B 25, C31-C38 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-12-C31


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Parra and J. R. Lowell, “Toward applications of slow light technology,” Opt. Photonics News 18, 41 (2007). [CrossRef]
  2. G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525-532 (2001). [CrossRef]
  3. J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characterisitics of fiber ring resonators,” IEEE J. Quantum Electron. 40, 726-730 (2004). [CrossRef]
  4. J. Mok, C. M. Sterke, and B. J. Eggleton, “Delay-tunable gap-soliton-based slow-light system,” Opt. Express 14, 11987-11996 (2006). [CrossRef] [PubMed]
  5. Y. Okawachi, J. E. Sharping, C. Xu, and A. L. Gaeta, “Large tunable optical delays via self-phase modulation and dispersion,” Opt. Express 14, 12022-12027 (2006). [CrossRef] [PubMed]
  6. R. Pant, M. D. Stenner, and M. A. Neifeld, “Limitations of self-phase modulation based tunable delay system for all-optical buffer design,” Appl. Opt. (to be published).
  7. R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Slow light: from basics to future prospects,” Photonics Spectra 40, 44-50 (2006).
  8. M. González Herráez, K. Y. Song, and L. Thévenaz, “Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express 14, 1395-1400 (2006). [CrossRef] [PubMed]
  9. D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13, 6234-6249 (2005). [CrossRef] [PubMed]
  10. J. B. Khurgin, “Performance limits of delay lines based on optical amplifiers,” Opt. Lett. 31, 948-950 (2006). [CrossRef] [PubMed]
  11. R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23, 4046-4066 (2005). [CrossRef]
  12. R. S. Tucker, “The role of optics and electronics in high-capacity routers,” J. Lightwave Technol. 24, 4655-4673 (2006). [CrossRef]
  13. D. A. B. Miller, “Fundamental limit for optical components,” J. Opt. Soc. Am. B 24, 1-18 (2007). [CrossRef]
  14. D. A. B. Miller, “Fundamental limit to linear one-dimensional slow light structures,” Phys. Rev. Lett. 99, 203903 (2007). [CrossRef]
  15. C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379-423 (1948).
  16. C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 623-656 (1948).
  17. C. P. Robert and G. Casella, Monte Carlo Statistical Methods (Springer, 1999), pp. 99-107.
  18. Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow-light devices via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22, 2378-2384 (2005). [CrossRef]
  19. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2007). [CrossRef]
  20. M. Lee, R. Pant, M. D. Stenner, and M. A. Neifeld, “SBS gain-based slow light system with a Fabry-Perot resonator,” Opt. Commun. 281, 2975-2984 (2008). [CrossRef]
  21. R. Pant, M. D. Stenner, M. A. Neifeld, Z. Shi, R. W. Boyd, and D. J. Gauthier, “Maximizing the opening of eye diagrams for slow-light systems,” Appl. Opt. 46, 6513-6519 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited