OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 12 — Dec. 1, 2008
  • pp: C75–C81

Uncoupled modes and all-angle negative refraction in walled honeycomb photonic crystals

Ken-Ming Lin and G. Y. Guo  »View Author Affiliations


JOSA B, Vol. 25, Issue 12, pp. C75-C81 (2008)
http://dx.doi.org/10.1364/JOSAB.25.000C75


View Full Text Article

Acrobat PDF (920 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Left-handed materials have superlensing effects that enable them to surmount the optical diffraction limit. A photonic crystal is able to mimic some properties of all-angle left-landed materials. In this study, the all-angle negative refraction criteria of photonic crystals are evaluated. The MIT Photonic-Bands program is employed to calculate the band structure of walled honeycomb photonic crystals, and the finite-difference time-domain method is used to provide a snapshot of the electric field distribution inside and outside the honeycomb photonic crystals. The results indicate that the all-angle negative refraction phenomena of the honeycomb photonic crystals are correlated with the orientation of the photonic crystals. Furthermore, the role of the uncoupled modes varies based on their orientation to the all-angle negative refraction photonic crystals, in one case assisting negative refraction and in the other case preventing it. The results suggest that symmetric properties should not be ignored when considering the negative refraction of photonic crystals.

© 2008 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(220.3620) Optical design and fabrication : Lens system design
(260.2065) Physical optics : Effective medium theory
(350.3618) Other areas of optics : Left-handed materials
(160.5298) Materials : Photonic crystals

ToC Category:
Slow Light in Coupled Resonators and Waveguides

History
Original Manuscript: May 14, 2008
Manuscript Accepted: July 23, 2008
Published: September 18, 2008

Citation
Ken-Ming Lin and G. Y. Guo, "Uncoupled modes and all-angle negative refraction in walled honeycomb photonic crystals," J. Opt. Soc. Am. B 25, C75-C81 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-12-C75


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef]
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, 1995).
  4. K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2001).
  5. A. Yariv and P. Yeh, Optical Waves in Crystals-Propagation and Control of Laser Radiation (Wiley Interscience, 2003).
  6. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  7. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef]
  8. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000). [CrossRef]
  9. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001). [CrossRef]
  10. C. Luo, M. Ibanescu, E. J. Reed, S. G. Johnson, and J. D. Joannopoulos, “Doppler radiation emitted by an oscillating dipole moving inside a photonic band-gap crystal,” Phys. Rev. Lett. 96, 043903 (2006). [CrossRef]
  11. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696-10705 (2000). [CrossRef]
  12. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104(R) (2000). [CrossRef]
  13. P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, “Photonic crystals: imaging by flat lens using negative refraction,” Nature 426, 404 (2003). [CrossRef]
  14. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Subwavelength resolution in a two-dimensional photonic-crystal-based superlens,” Phys. Rev. Lett. 91, 207401 (2003). [CrossRef]
  15. X. Wang, Z. F. Ren, and K. Kempa, “Unrestricted superlensing in a triangular two dimensional photonic crystal,” Opt. Express 12, 2919-2924 (2004). [CrossRef]
  16. C.-H. Kuo and Z. Ye, “Optical transmission of photonic crystal structures formed by dielectric cylinders: evidence for non-negative refraction,” Phys. Rev. E 70, 056608 (2004). [CrossRef]
  17. H.-T. Chien, H.-T. Tang, C.-H. Kuo, C.-C. Chen, and Z. Ye, “Directed diffraction without negative refraction,” Phys. Rev. B 70, 113101 (2004). [CrossRef]
  18. L.-S. Chen, C.-H. Kuo, and Z. Ye, “Guiding optical flows by photonic crystal slabs made of dielectric cylinders,” Phys. Rev. E 69, 066612 (2004). [CrossRef]
  19. Z.-Y. Li and L.-L. Lin, “Evaluation of lensing in photonic crystal slabs exhibiting negative refraction,” Phys. Rev. B 68, 245110 (2003). [CrossRef]
  20. S. Foteinopoulou and C. M. Soukoulis, “Negative refraction and left-handed behavior in two-dimensional photonic crystals,” Phys. Rev. B 67, 235107 (2003). [CrossRef]
  21. R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005). [CrossRef]
  22. R. Gajić, R. Meisels, F. Kuchar, and K. Hingerl, “All-angle left-handed negative refraction in Kagomé and honeycomb lattice photonic crystals,” Phys. Rev. B 73, 165310 (2006). [CrossRef]
  23. W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of photonic band structure in a two-dimensional periodic dielectric array,” Phys. Rev. Lett. 68, 2023-2026 (1992). [CrossRef]
  24. K. Sakoda, “Optical transmittance of a two-dimensional triangular photonic lattice,” Phys. Rev. B 51, 4672-4675 (1995). [CrossRef]
  25. K. Sakoda, “Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices,” Phys. Rev. B 52, 7982-7986 (1995). [CrossRef]
  26. A. Martínez, H. Míguez, A. Griol, and J. Martí, “Experimental and theoretical analysis of the self-focusing of light by a photonic crystal lens,” Phys. Rev. B 69, 165119 (2004). [CrossRef]
  27. R. L. Chern, C. C. Chang, and R. R. Hwang, “Large full band gaps for photonic crystals in two dimensions computed by an inverse method with multigrid acceleration,” Phys. Rev. E 68, 026704 (2003). [CrossRef]
  28. T.-I. Weng and G. Y. Guo, “Band structure of honeycomb photonic crystal slabs,” J. Appl. Phys. 99, 093102 (2006). [CrossRef]
  29. K. M. Leung and Y. F. Liu, “Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media,” Phys. Rev. Lett. 65, 2646-2649 (1990). [CrossRef]
  30. Z. Zhang and S. Satpathy, “Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell's equations,” Phys. Rev. Lett. 65, 2650-2653 (1990). [CrossRef]
  31. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152-3155 (1990). [CrossRef]
  32. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis,” Opt. Express 8, 173-190 (2001).
  33. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302-307 (1966). [CrossRef]
  34. J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185-200 (1994). [CrossRef]
  35. A. Taflove, Computational Electrodynamics--The Finite-Difference Time-Domain Method (Artech House, 2000).
  36. D. M. Sullivan, Electrodynamics Simulation Using The FDTD Method (IEEE, 2000).
  37. M. F. Su, D. A. Bader, I. El-Kady, and S.-Y. Lin, “A novel FDTD application featuring OpenMP-MPI hybrid parallelization,” in Proceedings of the 2004 International Conference on Parallel Processing (IEEE, 2004), pp. 373-379.
  38. Y. Aoyama and J. Nakano, RS/6000 SP: Practical MPI Programming (IBM Corporation, International Technical Support Organization, 1999), http://www.redbooks.ibm.com/.
  39. M. J. Quinn, Parallel Programming in C with MPI and OpenMP (McGraw-Hill, 2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited