OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 12 — Dec. 1, 2008
  • pp: C87–C97

Four-wave mixing and wavelength conversion in coupled-resonator optical waveguides

Andrea Melloni, Francesco Morichetti, and Mario Martinelli  »View Author Affiliations


JOSA B, Vol. 25, Issue 12, pp. C87-C97 (2008)
http://dx.doi.org/10.1364/JOSAB.25.000C87


View Full Text Article

Acrobat PDF (958 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The four-wave mixing process in coupled-resonator optical waveguides is considered in detail and an approximate and simple approach allowing one to estimate the conversion efficiency is proposed. The analytical results are verified through a reliable and complete numerical technique taking into account nonlinear induced phase modulations, the large-signal regime, and the pulse shape evolution along the structure. The conversion efficiency is enhanced by the slow down factor to the fourth power and the impact of attenuation and phase mismatch are carefully investigated. The main aim of this study is to provide a technique to design efficient and compact wavelength converters. Two examples of devices operating on signals at 10 and 50 Gbits/s are presented and discussed. Pulse distortions induced by chromatic dispersion, frequency detuning, and slow down factor wavelength dependence are examined and the beneficial role of the nonlinear induced phase modulation on the phase mismatch is pointed out. Numerical examples show that with typical semiconductor characteristics, very high conversion efficiencies with pump powers of only a few tenths of milliwatts are achievable.

© 2008 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(230.5750) Optical devices : Resonators

ToC Category:
Slow Light in Coupled Resonators and Waveguides

History
Original Manuscript: April 28, 2008
Revised Manuscript: August 1, 2008
Manuscript Accepted: August 4, 2008
Published: September 24, 2008

Citation
Andrea Melloni, Francesco Morichetti, and Mario Martinelli, "Four-wave mixing and wavelength conversion in coupled-resonator optical waveguides," J. Opt. Soc. Am. B 25, C87-C97 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-12-C87


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Ashkin, G. Boyd, and J. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. 2, 109-124 (1966). [CrossRef]
  2. P. Bayvel and I. P. Giles, “Frequency generation by four-wave mixing in all-fibre single-mode ring resonator,” Electron. Lett. 25, 1178-1180 (1989).
  3. J. G. Provost and R. Frey, “Cavity enhanced highly nondegenerate four-wave mixing in GaAlAs semiconductor lasers,” Appl. Phys. Lett. 55, 519-521 (1989). [CrossRef]
  4. S. Murata, A. Tomita, J. Shimizu, M. Kitamura, and A. Suzuki, “Observation of highly nondegenerate four-wave mixing (>1 THz) in an InGaAsP multiple quantum well laser,” Appl. Phys. Lett. 58, 1458-1460 (1991). [CrossRef]
  5. S. Jiang and M. Dagenais, “Observation of nearly degenerate and cavity enhanced highly nondenerate four-wave mixing in semiconductor lasers,” Appl. Phys. Lett. 62, 2757-2759 (1993). [CrossRef]
  6. J. A. Hudgings and Y. Lau, “Step-tunable all-optical wavelength conversion using cavity enhanced four-wave mixing,” IEEE J. Quantum Electron. 34, 1349-1355 (1998). [CrossRef]
  7. P. P. Absil, J. H. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, “Wavelength conversion in GaAs micro-ring resonators,” Opt. Lett. 25, 554-556 (2000).
  8. M. Fujii, C. Koos, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear FDTD analysis and experimental verification of four-wave mixing in InGaAsP-InP racetrack microresonators,” IEEE Photon. Technol. Lett. 18, 361-363 (2006). [CrossRef]
  9. A. Melloni, F. Morichetti, S. Pietralunga, and M. Martinelli, “Slow-wave wavelength converter,” in Proceedings of the 11th European Conference on Integrated Optics (2003), Vol. 1, pp. 97-100.
  10. Y. Xu, R. K. Lee, and A. Yariv, “Propagation and second-harmonic generation of electromagnetic waves in a coupled-resonator optical waveguide,” J. Opt. Soc. Am. B 17, 387-400 (2000). [CrossRef]
  11. S. Mookherjea and A. Yariv, “Second-harmonic generation with pulses in a coupled-resonator optical waveguide,” Phys. Rev. E 65, 026607 (2002). [CrossRef]
  12. S. Mookherjea and A. Yariv, “Coupled resonator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 448-456 (2002). [CrossRef]
  13. Y. Chen and S. Blair, “Nonlinearity enhancement in finite coupled-resonator slow-light waveguide,” Opt. Express 12, 3353-3366 (2004). [CrossRef]
  14. M. Soljacic, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19, 2052-2059 (2002). [CrossRef]
  15. S. Blair, “Enhanced four-wave mixing via photonic bandgap coupled defect resonances,” Opt. Express 13, 3868-3876 (2005). [CrossRef]
  16. J. E. Heebner, R. W. Boyd, and Q. Park, “SCISSOR solitons and other novel propagation effects in microresonator modified waveguides,” J. Opt. Soc. Am. B 19, 722-731 (2002). [CrossRef]
  17. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1999).
  18. A. Melloni and M. Martinelli, “Synthesis of direct-coupled resonators bandpass filters for WDM systems,” J. Lightwave Technol. 20, 296-303 (2002). [CrossRef]
  19. A. Melloni, M. Floridi, F. Morichetti, and M. Martinelli, “Equivalent circuit of Bragg gratings and its application to Fabry-Perot cavities,” J. Opt. Soc. Am. A 20, 273-281 (2003).
  20. A. Melloni, F. Morichetti, and M. Martinelli, “Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures,” Opt. Quantum Electron. 35, 365-379 (2003). [CrossRef]
  21. F. Morichetti, A. Melloni, J. Čáp, J. Petráček, P. Bienstman, G. Priem, B. Maes, M. Lauritano, and G. Bellanca, “Self-phase modulation in slow-wave structures: a comparative numerical analysis,” Opt. Quantum Electron. 38, 761-780 (2006).
  22. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629-4637 (2005). [CrossRef]
  23. S. F. Preble, Q. Xu, B. S. Schmidt, and M. Lipson, “Ultrafast all-optical modulation on a silicon chip,” Opt. Lett. 30, 2891-2893 (2005). [CrossRef]
  24. N. Shibata, R. Braun, and R. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1205-1210 (1987). [CrossRef]
  25. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600-4615 (2006). [CrossRef]
  26. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401-412 (2005). [CrossRef]
  27. M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115-116 (2008). [CrossRef]
  28. E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14, 3853-3863 (2006). [CrossRef]
  29. V. G. Taeed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 360-370 (2006). [CrossRef]
  30. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15, 5976-5990 (2007). [CrossRef]
  31. M. Bertolotti, A. Driessen, and F. Michelotti, “Microresonators as building block for VLSI photonics,” in AIP Conference Proceedings (AIP, 2004).
  32. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14, 4357-4362 (2006). [CrossRef]
  33. D. Dimitropoulos, V. Raghunathan, R. Claps, and B. Jalali, “Phase-matching and nonlinear optical processes in silicon waveguides,” Opt. Express 12, 149-160 (2004). [CrossRef]
  34. F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express 15, 17273-17282 (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited