OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 12 — Dec. 1, 2008
  • pp: C98–C108

Narrowband biphoton generation near atomic resonance

Shengwang Du, Jianming Wen, and Morton H. Rubin  »View Author Affiliations

JOSA B, Vol. 25, Issue 12, pp. C98-C108 (2008)

View Full Text Article

Acrobat PDF (406 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Generating nonclassical light offers a benchmark tool for fundamental research and potential applications in quantum optics. Conventionally, it has become a standard technique to produce nonclassical light through the nonlinear optical processes occurring in nonlinear crystals. We describe this process using cold atomic-gas media to generate such nonclassical light, especially focusing on narrowband biphoton generation. Compared with the standard procedure the new biphoton source has such properties as long coherence time, long coherence length, high spectral brightness, and high conversion efficiency. Although there exist two methodologies describing the physical process, we concentrate on the theoretical aspect of the entangled two-photon state produced from the four-wave mixing in a multilevel atomic ensemble using perturbation theory. We show that both linear and nonlinear optical responses to the generated fields play an important role in determining the biphoton waveform and, consequently, on the two-photon temporal correlation. There are two characteristic regimes determined by whether the linear or nonlinear coherence time is dominant. In addition, our model provides a clear physical picture that brings insight into understanding biphoton optics with this new source. We apply our model to recent work on generating narrowband (and even subnatural linewidth) paired photons using the technique of electromagnetically induced transparency and slow-light effect in cold atoms and find good agreement with experimental results.

© 2008 Optical Society of America

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.0270) Quantum optics : Quantum optics

ToC Category:
Physics of Slow Light and Implications of Slow Light for Quantum Information Science

Original Manuscript: April 16, 2008
Manuscript Accepted: July 16, 2008
Published: September 25, 2008

Shengwang Du, Jianming Wen, and Morton H. Rubin, "Narrowband biphoton generation near atomic resonance," J. Opt. Soc. Am. B 25, C98-C108 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, 1987).
  2. S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513-577 (2005). [CrossRef]
  3. M. Neilson and I. Chuang, Quantum Computation and Quantum Information (Cambridge U. Press, 2000).
  4. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145-195 (2002). [CrossRef]
  5. M. D'Angelo and Y.-H. Shih, “Quantum imaging,” Laser Phys. Lett. 2, 567-596 (2005). [CrossRef]
  6. A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733-2736 (2000). [CrossRef]
  7. M. D'Angelo, M. V. Chekhova, and Y.-H. Shih, “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett. 87, 013602 (2001). [CrossRef]
  8. A. Migdall, R. Datla, A. V. Sergienko, J. S. Orszak, and Y.-H. Shih, “Measuring absolute infrared spectral radiance with correlated visible photons: technique verification and measurement uncertainty,” Appl. Opt. 37, 3455-3463 (1998).
  9. S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable optical parametric fluorescence,” Phys. Rev. Lett. 18, 732-734 (1967). [CrossRef]
  10. D. Burnham and D. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84-87 (1970). [CrossRef]
  11. M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122-5133 (1994). [CrossRef]
  12. Y.-H. Shih, “Entangled biphoton source--property and preparation,” Rep. Prog. Phys. 66, 1009-1044 (2003). [CrossRef]
  13. D. N. Klyshko, Photons and Nonlinear Optics (Gordon and Breach, 1988).
  14. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413-418 (2001). [CrossRef]
  15. S. Lloyd, M. S. Shahriar, J. H. Shapiro, and P. R. Hemmer, “Long distance, unconditional teleportation of atomic states via complete Bell state measurements,” Phys. Rev. Lett. 87, 167903 (2001). [CrossRef]
  16. H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, D. Collins, and N. Gisin, “Long distance quantum teleportation in a quantum relay configuration,” Phys. Rev. Lett. 92, 047904 (2004). [CrossRef]
  17. Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett. 83, 2556-2559 (1999). [CrossRef]
  18. H. Wang, T. Horikiri, and T. Kobayashi, “Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion,” Phys. Rev. A 70, 043804 (2004). [CrossRef]
  19. C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Time-bin-modulated biphotons from cavity-enhanced down-conversion,” Phys. Rev. Lett. 97, 223601 (2006). [CrossRef]
  20. J. S. Neergaard-Nielsen, B. M. Nielsen, H. Takahashi, A. I. Vistnes, and E. S. Polzik, “High purity bright single photon source,” Opt. Express 15, 7940-7949 (2007). [CrossRef]
  21. H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer Verlag, 2002).
  22. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36-40 (1997).
  23. M. Fleischhauer, A. Imamoglu, and J. P. Manarangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633-673 (2005). [CrossRef]
  24. M. Xiao, Y.-Q. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666-669 (1995). [CrossRef]
  25. S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611-4614 (1999). [CrossRef]
  26. M. Yan, E. G. Rickey, and Y. Zhu, “Observation of absorptive photon switching by quantum interference,” Phys. Rev. A 64, 041801(R) (2001). [CrossRef]
  27. D. A. Braje, V. Balić, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801(R) (2003). [CrossRef]
  28. D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency mixing using electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 93, 183601 (2004). [CrossRef]
  29. C. H. van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science 301, 196-200 (2003). [CrossRef]
  30. A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature (London) 423, 731-734 (2003). [CrossRef]
  31. V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, “Generation of paired photons with controllable waveforms,” Phys. Rev. Lett. 94, 183601 (2005). [CrossRef]
  32. P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, and S. E. Harris, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97, 113602 (2006). [CrossRef]
  33. S. Du, P. Kolchin, C. Belthangady, G. Y. Yin, and S. E. Harris, “Subnatural linewidth biphotons with controllable temporal length,” Phys. Rev. Lett. 100, 183603 (2008). [CrossRef]
  34. J. K. Thompson, J. Simon, H. Loh, and V. Vuletic, “A high-brightness source of narrowband, identical-photon pairs,” Science 313, 74-77 (2006). [CrossRef]
  35. S. Du, J.-M. Wen, M. H. Rubin, and G. Y. Yin, “Four-wave mixing and biphoton generation in a two-level system,” Phys. Rev. Lett. 98, 053601 (2007). [CrossRef]
  36. P. Kolchin, “Electromagnetically-induced-transparency-based paired photon generation,” Phys. Rev. A 75, 033814 (2007). [CrossRef]
  37. C. H. R. Ooi, Q. Sun, M. S. Zubairy, and M. O. Scully, “Correlation of photon pairs from the double Raman amplifier: generalized analytical quantum Langevin theory,” Phys. Rev. A 75, 013820 (2007). [CrossRef]
  38. J.-M. Wen and M. H. Rubin, “Transverse effects in paired-photon generation via an electromagnetically induced transparency medium. I. Perturbation theory,” Phys. Rev. A 74, 023808 (2006). [CrossRef]
  39. J.-M. Wen and M. H. Rubin, “Transverse effects in paired-photon generation via an electromagnetically induced transparency medium. II. Beyond perturbation theory,” Phys. Rev. A 74, 023809 (2006). [CrossRef]
  40. J.-M. Wen, S. Du, and M. H. Rubin, “Biphoton generation in a two-level atomic ensemble,” Phys. Rev. A 75, 033814 (2007). [CrossRef]
  41. J.-M. Wen, S. Du, and M. H. Rubin, “Spontaneous parametric down-conversion in a three-level system,” Phys. Rev. A 76, 013825 (2007). [CrossRef]
  42. J.-M. Wen, S. Du, Y. Zhang, M. Xiao, and M. H. Rubin, “Nonclassical light generation via a four-level inverted-Y system,” Phys. Rev. A 77, 033816 (2008). [CrossRef]
  43. R. W. Boyd, Nonlinear Optics (Academic, 2003).
  44. S. Du, C. Belthangady, P. Kolchin, G. Y. Yin, and S. E. Harris, “Observation of optical precursors at the biphoton level,” Opt. Lett. 33, 2149-2151 (2008).
  45. S. Du, E. Oh, J.-M. Wen, and M. H. Rubin, “Four-wave mixing in three-level systems: interference and entanglement,” Phys. Rev. A 76, 013803 (2007). [CrossRef]
  46. R. Ghosh and L. Mandel, “Observation of nonclassical effects in the interference of two photons,” Phys. Rev. Lett. 59, 1903-1905 (1987). [CrossRef]
  47. D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon 'ghost' interference and diffraction,” Phys. Rev. Lett. 74, 3600-3603 (1995). [CrossRef]
  48. Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Phys. Rev. Lett. 61, 2921-2924 (1988). [CrossRef]
  49. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044-2046 (1987). [CrossRef]
  50. J.-M. Wen, M. H. Rubin, and S. Du, “A new beating experiment using biphotons generated from a two-level system,” in Slow and Fast Light (Optical Society of America, 2007), paper STuD4.
  51. J.-M. Wen, S. Du, M. H. Rubin, and E. Oh, “Two-photon beatings using biphotons generated from a two-level system,” Phys. Rev. A 78, 033801 (2008).
  52. T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56, 1534-1541 (1997). [CrossRef]
  53. H. J. Kimble, M. Dagenais, and L. Mandel, “Photon antibunching in resonance fluorescence,” Phys. Rev. Lett. 39, 691-695 (1977). [CrossRef]
  54. A. V. Sergienko, Y. H. Shih, and M. H. Rubin, “Experimental evaluation of a two-photon wave packet in type-II parametric downconversion,” J. Opt. Soc. Am. B 12, 859-862 (1994).
  55. L. Brillouin, Wave Propagation and Group Velocity (Academic, 1960).
  56. J.-M. Wen and M. H. Rubin, “Theory of two-photon interference in an electromagnetically induced transparency system,” Phys. Rev. A 70, 063806 (2004). [CrossRef]
  57. S. Thanvanthri, J.-M. Wen, and M. H. Rubin, “Effects of mismatched transmissions on two-mode squeezing and EPR correlations with a slow light medium,” Phys. Rev. A 72, 023822 (2005). [CrossRef]
  58. R. M. Camacho, P. K. Vudyasetu, and J. H. Howell, “Storage and retrieval of optical pulses using a two-color optical memory,” Nature Phys. (to be published).
  59. V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321, 544-547 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited