OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry M. Van Driel
  • Vol. 25, Iss. 2 — Feb. 1, 2008
  • pp: 187–195

Influence of dielectric environment on quantum-well luminescence spectra

M. Schafer, W. Hoyer, M. Kira, S. W. Koch, and J. V. Moloney  »View Author Affiliations


JOSA B, Vol. 25, Issue 2, pp. 187-195 (2008)
http://dx.doi.org/10.1364/JOSAB.25.000187


View Full Text Article

Enhanced HTML    Acrobat PDF (566 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A fully microscopical theory for the photoluminescence of a quantum-well in an arbitrary one-dimensional stack structure is presented. For strong-coupling configurations, the full semiconductor luminescence equations are solved. For the weak-coupling regime, a frequency-dependent filter function is directly derived from the semiconductor luminescence equations with the knowledge of the dielectric structure. Via that filter function, the detected luminescence can be related to the pure quantum-well emission in vacuum. The approach is generalized to include corrections to the emitted peak width due to the photonic-environment-dependent radiative decay, and the corrections are shown to be obtainable from the mode functions alone. The applicability of the method is thoroughly tested up to the onset of normal-mode coupling.

© 2008 Optical Society of America

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(250.5230) Optoelectronics : Photoluminescence

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 21, 2007
Revised Manuscript: November 9, 2007
Manuscript Accepted: November 12, 2007
Published: January 28, 2008

Citation
M. Schafer, W. Hoyer, M. Kira, S. W. Koch, and J. V. Moloney, "Influence of dielectric environment on quantum-well luminescence spectra," J. Opt. Soc. Am. B 25, 187-195 (2008)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-25-2-187


Sort:  Year  |  Journal  |  Reset  

References

  1. E. F. Schubert, Y. H. Wang, A. Y. Cho, L. W. Tu, and G. J. Zydyik, "Resonant cavity light-emitting diode," Appl. Phys. Lett. 60, 921-924 (1992). [CrossRef]
  2. E. F. Schubert, Light-Emitting Diodes (Cambride U. Press, 2006). [CrossRef]
  3. T. H. Maiman, "Stimulated optical radiation in ruby," Nature 187, 493-494 (1960). [CrossRef]
  4. S. L. Chuang, Physics of Optoelectronic Devices (Wiley, 1995).
  5. W. W. Chow and S. W. Koch, Semiconductor Laser Fundamentals, 1st ed. (Springer Verlag, 1999).
  6. E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946). [CrossRef]
  7. F. D. Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. Lett. 59, 2955-2958 (1987). [CrossRef] [PubMed]
  8. J. Martorell and N. M. Lawandy, "Observation of inhibited spontaneous emission in a periodic dielectric structure," Phys. Rev. Lett. 65, 1877-1880 (1990). [CrossRef] [PubMed]
  9. J. P. Dowling and C. M. Bowden, "Atomic emission rates in inhomogeneous media with applications to photonic band structures," Phys. Rev. A 46, 612-622 (1992). [CrossRef] [PubMed]
  10. A. G. Kofman, G. Kurizki, and B. Sherman, "Spontaneous and induced atomic decay in photonic band structures," J. Mod. Opt. 41, 353-384 (1994). [CrossRef]
  11. M. D. Tocci, M. Scalora, M. J. Bloemer, J. P. Dowling, and C. M. Bowden, "Measurement of spontaneous-emission enhancement near the one-dimensional photonic band edge of semiconductor heterostructures," Phys. Rev. A 53, 2799-2803 (1996). [CrossRef] [PubMed]
  12. P. Lambropoulos, G. M. Nikolopoulos, T. R. Nielsen, and S. Bay, "Fundamental quantum optics in structured reservoirs," Rep. Prog. Phys. 63, 455-503 (2000). [CrossRef]
  13. E. Yablanovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef]
  14. R. E. Slusher and C. Weisbuch, "Optical microcavities in condensed matter systems," Solid State Commun. 92, 149-157 (1994). [CrossRef]
  15. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, "Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity," Phys. Rev. Lett. 69, 3314-3317 (1992). [CrossRef] [PubMed]
  16. F. Jahnke, M. Kira, S. W. Koch, G. Khitrova, E. K. Lindmark, T. R. Nelson, Jr., D. V. Wick, J. D. Berger, O. Lyngnes, H. M. Gibbs, and K. Tai, "Excitonic nonlinearities of semiconductor microcavities in the nonperturbative regime," Phys. Rev. Lett. 77, 5257-5260 (1996). [CrossRef] [PubMed]
  17. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, "Vacuum Rabi splitting in semiconductors," Nat. Phys. 2, 81-90 (2006) [CrossRef]
  18. G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, "Nonlinear optics of normal-mode-coupling semiconductor microcavities," Rev. Mod. Phys. 71, 1591-1639 (1999). [CrossRef]
  19. G. Hernandez, Fabry-Perot Interferometers (Cambridge U. Press, 1986).
  20. V. M. Agranovich and O. A. Dubowskii, "Effect of retarded interaction of exciton spectrum in 1-dimensional and 2-dimensional crystals," JETP Lett. 3, 223-226 (1966).
  21. J. Feldmann, G. Peter, E. O. Göbel, P. Dawson, K. Moore, C. Foxon, and R. J. Elliott, "Linewidth dependence of radiative exciton lifetimes in quantum wells," Phys. Rev. Lett. 59, 2337-2340 (1987). [CrossRef] [PubMed]
  22. E. Hanamura, "Rapid radiative decay and enhanced optical nonlinearity of excitons in a quantum well," Phys. Rev. B 38, 1228-1234 (1988). [CrossRef]
  23. B. Deveaud, F. Clérot, N. Roy, K. Satzke, B. Sermage, and D. S. Katzer, "Enhanced radiative recombination of free excitons in GaAs quantum wells," Phys. Rev. Lett. 67, 2355-2358 (1991). [CrossRef] [PubMed]
  24. M. Kira, F. Jahnke, W. Hoyer, and S. W. Koch, "Quantum theory of secondary emission in optically excited semiconductor quantum wells," Prog. Quantum Electron. 23, 189-279 (1999). [CrossRef]
  25. M. Kira and S. W. Koch, "Many-body correlations and exciton effects in semiconductor spectroscopy," Prog. Quantum Electron. 30, 155-296 (2006). [CrossRef]
  26. E. Mertzbacher, Quantum Mechanics, 3rd ed. (Wiley, 1998).
  27. M. Born and E. Wolf, Principles of Optics, Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge U. Press, 1999). [PubMed]
  28. M. Kira, F. Jahnke, and S. W. Koch, "Microscopic theory of excitonic signatures in semiconductor photoluminescence," Phys. Rev. Lett. 81, 3263-3266 (1998). [CrossRef]
  29. S. Chatterjee, C. Ell, S. Mosor, G. Khitrova, H. M. Gibbs, W. Hoyer, M. Kira, S. W. Koch, J. P. Prineas, and H. Stolz, "Excitonic photoluminescence in semiconductor quantum wells: plasma versus excitons," Phys. Rev. Lett. 92, 067402 (2004). [CrossRef] [PubMed]
  30. W. Hoyer, M. Kira, S. W. Koch, J. Hader, and J. V. Moloney, "Coulomb effects on quantum-well luminescence spectra and radiative recombination times," J. Opt. Soc. Am. 24, 1344-1353 (2007). [CrossRef]
  31. H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 4th ed. (World Scientific, 2004).
  32. M. Schafer, M. Werchner, W. Hoyer, M. Kira, and S. W. Koch, "Quantum theory of luminescence in multiple-quantum-well Bragg structures," Phys. Rev. B 74, 155315 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited